Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(11): uhad200, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023477

RESUMO

Cassava is a crucial crop that makes a significant contribution to ensuring human food security. However, high-quality telomere-to-telomere cassava genomes have not been available up to now, which has restricted the progress of haploid molecular breeding for cassava. In this study, we constructed two nearly complete haploid resolved genomes and an integrated, telomere-to-telomere gap-free reference genome of an excellent cassava variety, 'Xinxuan 048', thereby providing a new high-quality genomic resource. Furthermore, the evolutionary history of several species within the Euphorbiaceae family was revealed. Through comparative analysis of haploid genomes, it was found that two haploid genomes had extensive differences in linear structure, transcriptome features, and epigenetic characteristics. Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway. The high heterozygosity of cassava 'Xinxuan 048' leads to rapid trait segregation in the first selfed generation. This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.

2.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2772-2793, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584131

RESUMO

Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sacarose/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Complementar , Filogenia , Plantas Geneticamente Modificadas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Plant Sci ; 14: 1192417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441177

RESUMO

Sweet potato [Ipomoea batatas (L.) Lam.] is an important food and industrial crop. Its storage root is rich in starch, which is present in the form of granules and represents the principal storage carbohydrate in plants. Starch content is an important trait of sweet potato controlling the quality and yield of industrial products. Vacuolar invertase encoding gene Ibßfruct2 was supposed to be a key regulator of starch content in sweet potato, but its function and regulation were unclear. In this study, three Ibßfruct2 gene members were detected. Their promoters displayed differences in sequence, activity, and cis-regulatory elements and might interact with different transcription factors, indicating that the three Ibßfruct2 family members are governed by different regulatory mechanisms at the transcription level. Among them, we found that only Ibßfruct2-1 show a high expression level and promoter activity, and encodes a protein with invertase activity, and the conserved domains and three conserved motifs NDPNG, RDP, and WEC are critical to this activity. Only two and six amino acid residue variations were detected in sequences of proteins encoded by Ibßfruct2-2 and Ibßfruct2-3, respectively, compared with Ibßfruct2-1; although not within key motifs, these variations affected protein structure and affinities for the catalytic substrate, resulting in functional deficiency and low activity. Heterologous expression of Ibßfruct2-1 in Arabidopsis decreased starch content but increased glucose content in leaves, indicating Ibßfruct2-1 was a negative regulator of starch content. These findings represent an important advance in understanding the regulatory and functional divergence among duplicated genes in sweet potato, and provide critical information for functional studies and utilization of these genes in genetic improvement.

4.
Plant Physiol Biochem ; 201: 107815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301188

RESUMO

As a key enzyme in the starch and sugar metabolic pathways in sweet potato (Ipomoea batatas (L.) Lam.), the vacuolar invertase (EC 3.2.1.26) IbßFRUCT2 is involved in partitioning and modulating the starch and sugar components of the storage root. However, the post-translational regulation of its invertase activity remains unclear. In this study, we identified three invertase inhibitors, IbInvInh1, IbInvInh2, and IbInvInh3, as potential interaction partners of IbßFRUCT2. All were found to act as vacuolar invertase inhibitors (VIFs) and belonged to the plant invertase/pectin methyl esterase inhibitor superfamily. Among the three VIFs, IbInvInh2 is a novel VIF in sweet potato and was confirmed to be an inhibitor of IbßFRUCT2. The N-terminal domain of IbßFRUCT2 and the Thr39 and Leu198 sites of IbInvInh2 were predicted to be engaged in their interactions. The transgenic expression of IbInvInh2 in Arabidopsis thaliana plants reduced the starch content of leaves, while its expression in the Ibßfruct2-expressing Arabidopsis plants increased the starch content of leaves, suggesting that the post-translational inhibition of IbßFRUCT2 activity by IbInvInh2 contributes to the regulation of the plant starch content. Taken together, our findings reveal a novel VIF in sweet potato and provide insights into the potential regulatory roles of the VIFs and invertase-VIF interaction in starch metabolism. These insights lay the foundation for using VIFs to improve the starch properties of crops.


Assuntos
Ipomoea batatas , Amido , Amido/metabolismo , Ipomoea batatas/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Metabolismo dos Carboidratos , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
5.
BMC Genomics ; 24(1): 299, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268915

RESUMO

BACKGROUND: Pueraria montana var. lobata (kudzu) is an important food and medicinal crop in Asia. However, the phylogenetic relationships between Pueraria montana var. lobata and the other two varieties (P. montana var. thomsonii and P. montana var. montana) remain debated. Although there is increasing evidence showing that P. montana var. lobata adapts to various environments and is an invasive species in America, few studies have systematically investigated the role of the phylogenetic relationships and evolutionary patterns of plastomes between P. montana var. lobata and its closely related taxa. RESULTS: 26 newly sequenced chloroplast genomes of Pueraria accessions resulted in assembled plastomes with sizes ranging from 153,360 bp to 153,551 bp. Each chloroplast genome contained 130 genes, including eight rRNA genes, 37 tRNA genes, and 85 protein-coding genes. For 24 newly sequenced accessions of these three varieties of P. montana, we detected three genes and ten noncoding regions with higher nucleotide diversity (π). After incorporated publically available chloroplast genomes of Pueraria and other legumes, 47 chloroplast genomes were used to construct phylogenetic trees, including seven P. montana var. lobata, 14 P. montana var. thomsonii and six P. montana var. montana. Phylogenetic analysis revealed that P. montana var. lobata and P. montana var. thomsonii formed a clade, while all sampled P. montana var. montana formed another cluster based on cp genomes, LSC, SSC and protein-coding genes. Twenty-six amino acid residues were identified under positive selection with the site model. We also detected six genes (accD, ndhB, ndhC, rpl2, rpoC2, and rps2) that account for among-site variation in selective constraint under the clade model between accessions of the Pueraria montana var. lobata clade and the Pueraria montana var. montana clade. CONCLUSION: Our data provide novel comparative plastid genomic insights into conservative gene content and structure of cp genomes pertaining to P. montana var. lobata and the other two varieties, and reveal an important phylogenetic clue and plastid divergence among related taxa of P. montana come from loci that own moderate variation and underwent modest selection.


Assuntos
Fabaceae , Genoma de Cloroplastos , Pueraria , Filogenia , Pueraria/genética , Fabaceae/genética , Evolução Biológica , Genômica
6.
BMC Plant Biol ; 23(1): 107, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814206

RESUMO

BACKGROUND: R2R3-MYB transcription factors regulate secondary metabolism, stress responses and development in various plants. Puerarin is a bioactive ingredient and most abundant secondary metabolite isolated from Pueraria lobata. The biosynthesis of puerarin proceeds via the phenylpropanoid pathway and isoflavonoids pathway, in which 9 key enzymes are involved. The expression of these structural genes is under control of specific PtR2R3-MYB genes in different plant tissues. However, how PtR2R3-MYB genes regulates structural genes in puerarin biosynthesis remains elusive. This study mined the PtR2R3-MYB genes involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. RESULTS: A total of 209 PtR2R3-MYB proteins were identified, in which classified into 34 subgroups based on the phylogenetic topology and the classification of the R2R3-MYB superfamily in Arabidopsis thaliana. Furtherly physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze PtR2R3-MYBs. Combining puerarin content and RNA-seq data, speculated on the regulated puerarin biosynthesis of PtR2R3-MYB genes and structural genes, thus 21 PtR2R3-MYB genes and 25 structural genes were selected for validation gene expression and further explore its response to MeJA and GSH treatment by using qRT-PCR analysis technique. Correlation analysis and cis-acting element analysis revealed that 6 PtR2R3-MYB genes (PtMYB039, PtMYB057, PtMYB080, PtMYB109, PtMYB115 and PtMYB138) and 7 structural genes (PtHID2, PtHID9, PtIFS3, PtUGT069, PtUGT188, PtUGT286 and PtUGT297) were directly or indirectly regulation of puerarin biosynthesis in ZG11. It is worth noting that after MeJA and GSH treatment for 12-24 h, the expression changes of most candidate genes were consistent with the correlation of puerarin biosynthesis, which also shows that MeJA and GSH have the potential to mediate puerarin biosynthesis by regulating gene expression in ZG11. CONCLUSIONS: Overall, this study provides a comprehensive understanding of the PtR2R3-MYB and will paves the way to reveal the transcriptional regulation of puerarin biosynthesis and response to phytohormone of PtR2R3-MYB genes in Pueraria lobata var. thomsonii.


Assuntos
Arabidopsis , Pueraria , Genes myb , Pueraria/genética , Filogenia , Fatores de Transcrição/genética , Arabidopsis/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
7.
DNA Res ; 29(5)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961033

RESUMO

Pueraria lobata var. montana (P. montana) belongs to the genus Pueraria and originated in Asia. Compared with its sister P. thomsonii, P. montana has stronger growth vigour and cold-adaption but contains less bioactive metabolites such as puerarin. To promote the investigation of metabolic regulation and genetic improvement of Pueraria, the present study reports a chromosome-level genome of P. montana with length of 978.59 Mb and scaffold N50 of 80.18 Mb. Comparative genomics analysis showed that P. montana possesses smaller genome size than that of P. thomsonii owing to less repeat sequences and duplicated genes. A total of 6,548 and 4,675 variety-specific gene families were identified in P. montana and P. thomsonii, respectively. The identified variety-specific and expanded/contracted gene families related to biosynthesis of bioactive metabolites and microtubules are likely the causes for the different characteristics of metabolism and cold-adaption of P. montana and P. thomsonii. Moreover, a graphic genome was constructed based on 11 P. montana accessions. Total 92 structural variants were identified and most of which are related to stimulus-response. In conclusion, the chromosome-level and graphic genomes of P. montana will not only facilitate the studies of evolution and metabolic regulation, but also promote the breeding of Pueraria.


Assuntos
Pueraria , Ásia , Cromossomos , Montana , Melhoramento Vegetal , Pueraria/química , Pueraria/genética
8.
BMC Plant Biol ; 21(1): 595, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915842

RESUMO

Sweet potato (Ipomoea batatas (L.) Lam.) is a good source of carbohydrates, an excellent raw material for starch-based industries, and a strong candidate for biofuel production due to its high starch content. However, the molecular basis of starch biosynthesis and accumulation in sweet potato is still insufficiently understood. Glucose-6-phosphate/phosphate translocators (GPTs) mediate the import of glucose-6-phosphate (Glc6P) into plastids for starch synthesis. Here, we report the isolation of a GPT-encoding gene, IbG6PPT1, from sweet potato and the identification of two additional IbG6PPT1 gene copies in the sweet potato genome. IbG6PPT1 encodes a chloroplast membrane-localized GPT belonging to the GPT1 group and highly expressed in storage root of sweet potato. Heterologous expression of IbG6PPT1 resulted in increased starch content in the leaves, root tips, and seeds and soluble sugar in seeds of Arabidopsis thaliana, but a reduction in soluble sugar in the leaves. These findings suggested that IbG6PPT1 might play a critical role in the distribution of carbon sources in source and sink and the accumulation of carbohydrates in storage tissues and would be a good candidate gene for controlling critical starch properties in sweet potato.


Assuntos
Antiporters/isolamento & purificação , Glucose-6-Fosfato/metabolismo , Ipomoea batatas/química , Proteínas de Transporte de Monossacarídeos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Cloroplastos/química , Clonagem Molecular , Genes de Plantas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Conformação Proteica , Amido/metabolismo , Açúcares/metabolismo
9.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770994

RESUMO

Pueraria lobata and its variety P. lobata var. thomsonii are both traditional Chinese medicines that have high nutritional and medical value; whereas another variety, P. lobata var. montana has low nutritional and medicinal value and can cause ecological disasters. The material basis of different nutritional and medicinal values, which are caused by metabolite differences among these varieties, remains to be further clarified. Here, we performed ultra performance liquid chromatography-tandem mass spectrometry based widely targeted metabolome analysis on Pueraria lobata, P. lobata var. thomsonii, and P. lobata var. montana. Among them, a total of 614 metabolites were identified, and distinguished from each other using orthogonal partial least squares discriminant analysis. Our results suggest that the nutritional differences between P. lobata and its varieties can be explained by variations in the abundance of amino acids, nucleotides, saccharides, and lipids; differences in flavonoids, isoflavones, phenolic acids, organic acids, and coumarins contents caused the differences in the medicinal quality of P. lobata and its varieties. Additionally, the key metabolites responsible for the classification of the three Pueraria varieties were identified. This study provides new insights into the underlying metabolic causes of nutritional and medicinal variation in P. lobata and its varieties.


Assuntos
Medicamentos de Ervas Chinesas/análise , Metabolômica , Pueraria/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/metabolismo , Medicina Tradicional Chinesa , Valor Nutritivo , Pueraria/metabolismo , Espectrometria de Massas em Tandem
10.
Front Plant Sci ; 8: 914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690616

RESUMO

The starch properties of the storage root (SR) affect the quality of sweet potato (Ipomoea batatas (L.) Lam.). Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP)]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs) involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar-starch conversion steps catalyzed by sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) may be essential for starch accumulation in the dry matter of SRs, and IbßFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs.

11.
Front Plant Sci ; 7: 223, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973669

RESUMO

Sweet potato (Ipomoea batatas L.) is a nutritious food crop and, based on the high starch content of its storage root, a potential bioethanol feedstock. Enhancing the nutritional value and starch quantity of storage roots are important goals of sweet potato breeding programs aimed at developing improved varieties for direct consumption, processing, and industrial uses. However, developing improved lines of sweet potato is challenging due to the genetic complexity of this plant and the lack of genome information. Short sequence repeat (SSR) markers are powerful molecular tools for tracking important loci in crops and for molecular-based breeding strategies; however, few SSR markers and marker-trait associations have hitherto been identified in sweet potato. In this study, we identified 1824 SSRs by using a de novo assembly of publicly available ESTs and mRNAs in sweet potato, and designed 1476 primer pairs based on SSR-containing sequences. We mapped 214 pairs of primers in a natural population comprised of 239 germplasms, and identified 1278 alleles with an average of 5.972 alleles per locus and a major allele frequency of 0.7702. Population structure analysis revealed two subpopulations in this panel of germplasms, and phenotypic characterization demonstrated that this panel is suitable for association mapping of starch-related traits. We identified 32, 16, and 17 SSR markers associated with starch content, ß-carotene content, and starch composition in the storage root, respectively, using association analysis and further evaluation of a subset of sweet potato genotypes with various characteristics. The SSR markers identified here can be used to select varieties with desired traits and to investigate the genetic mechanism underlying starch and carotenoid formation in the starchy roots of sweet potato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...