Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(22): e2104823, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652200

RESUMO

AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.


Assuntos
Aurora Quinase A , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteômica
2.
J Med Chem ; 65(9): 6573-6592, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35500243

RESUMO

EZH2 inhibitors that prevent trimethylation of histone lysine 27 (H3K27) are often limited to the treatment of a subset of hematological malignancies. In most solid tumors, EZH2 inhibitors induce reciprocal H3K27 acetylation that subsequently results in acquired drug resistance. The combination of EZH2 and BRD4 inhibitors to resensitize solid cancer cells to EZH2 inhibitors has proven to be effective, underlying the significance of developing dual inhibitors. Herein, we present the design, synthesis, and biological evaluation of first-in-class dual EZH2/BRD4 inhibitors. Our most promising compound, YM458, displays potent inhibitory activity against EZH2 and BRD4 and remarkable antiproliferative capacity against 11 solid cancer cell lines. Its in vivo therapeutic potential is validated in both lung cancer and pancreatic cancer xenograft tumor mice models, highlighting the potential of EZH2/BRD4 dual inhibitors to target a broad scope of EZH2 inhibitor-resistant solid tumors.


Assuntos
Neoplasias , Proteínas Nucleares , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Fatores de Transcrição
3.
RSC Adv ; 9(57): 33170-33179, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35529157

RESUMO

Polycyclic heteroarenes are important scaffolds in the construction of pharmaceuticals. We have previously developed a series of novel heterocyclic iodoniums. In our current work, these unique iodoniums were employed to construct various complex polycyclic heteroarenes with structural diversity via tandem dual arylations. As a result, indole, thiophene and triphenylene motifs were fused into these heterocycles with high molecular quality, which might provide promising fragments in drug discovery. Moreover, these heterocycles could be diversified at a late stage.

4.
Org Lett ; 20(16): 4815-4818, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30052461

RESUMO

A diverse set of novel heterocyclic iodoniums was synthesized for the first time. The reactions of these unique iodoniums with environmentally benign water as the oxygen source provided structurally complex oxygen-incorporated heteropolycycles that are essential motifs in natural products and biologically active compounds. The transformation only required low-cost copper acetate. Further derivatization of the obtained polycycles expanded the structural diversity, which is important in the building of chemical libraries for drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...