Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298208

RESUMO

Glioblastoma multiforme (GBM) is a grade IV human glioma. It is the most malignant primary central nervous system tumor in adults, accounting for around 15% of intracranial neoplasms and 40-50% of all primary malignant brain tumors. However, the median survival time of GBM patients is still less than 15 months, even after treatment with surgical resection, concurrent chemoradiotherapy, and adjuvant chemotherapy with temozolomide (TMZ). Telomere maintenance 2 (TELO2) mRNA is highly expressed in high-grade glioma patients, and its expression correlates with shorter survival outcomes. Hence, it is urgent to address the functional role of TELO2 in the tumorigenesis and TMZ treatment of GBM. In this study, we knocked down TELO2 mRNA in GBM8401 cells, a grade IV GBM, compared with TELO2 mRNA overexpression in human embryonic glial SVG p12 cells and normal human astrocyte (NHA) cells. We first analyzed the effect of TELO2 on the Elsevier pathway and Hallmark gene sets in GBM8401, SVG p12, and NHA via an mRNA array analysis. Later, we further examined and analyzed the relationship between TELO2 and fibroblast growth factor receptor 3, cell cycle progression, epithelial-mesenchymal transient (EMT), reactive oxygen species (ROS), apoptosis, and telomerase activity. Our data showed that TELO2 is involved in several functions of GBM cells, including cell cycle progression, EMT, ROS, apoptosis, and telomerase activity. Finally, we examined the crosstalk between TELO2 and the responsiveness of TMZ or curcumin mediated through the TELO2-TTI1-TTI2 complex, the p53-dependent complex, the mitochondrial-related complex, and signaling pathways in GBM8401 cells. In summary, our work provides new insight that TELO2 might modulate target proteins mediated through the complex of phosphatidylinositol 3-kinase-related kinases in its involvement in cell cycle progression, EMT, and drug response in GBM patients.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioblastoma , Glioma , Telomerase , Adulto , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Telomerase/genética , Telomerase/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Carcinogênese/genética , Transformação Celular Neoplásica , RNA Mensageiro , Telômero/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
2.
Front Oncol ; 12: 811716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155248

RESUMO

BACKGROUND: Breast cancer in women is one of the leading causes of cancer mortality worldwide, and curative therapy is the main focus of clinical treatment. Anesthetic-analgesic techniques might alter stress responses and immunity and thereby influence outcomes in cancer patients. This study investigated the effect of tramadol on breast cancer progression and metastasis. METHODS: The effects of tramadol on two different subtypes of human breast adenocarcinoma cell lines, MDA-MB-231 and MCF-7, were studied with regard to cell growth, migration, colony formation and invasion and normoxic or hypoxic microenvironment for the expression of hypoxia-inducible factor-1α, reactive oxygen species, epithelial-mesenchymal transition related and cyclin-related proteins. The co-administration of tramadol and doxorubicin was studied to determine whether the effective doxorubicin dose might be reduced in combination with tramadol. RESULTS: The results showed that tramadol inhibited cell growth at concentrations more than 0.5 and more than 1.0 mg/mL in MDA-MB-231 and MCF-7 cells, respectively. Additionally, cell migration, colony formation and invasion were inhibited in a dose-dependent manner by tramadol in both cell lines. The combination of tramadol and doxorubicin induced synergistic effects in MDA-MD-231 cells and, with specific dosage combinations in MCF-7 cells. CONCLUSIONS: Tramadol may regulate epithelial-mesenchymal transition and possess cytotoxic effects in breast cancer cells. Tramadol inhibits the progression of breast cancer cells and might be a candidate for combination therapy, especially for triple-negative breast cancer, and is a promising treatment strategy for breast cancer.

3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613541

RESUMO

Tramadol is a common anesthetic used to treat cancer pain, including endometrial cancer, but its function in endometrial cancer remains unclear. The purpose of this study was to elucidate the antitumor effects of tramadol on human endometrial cancer cells. Colony formation, BrdU, cell cycle profiles, apoptosis, ROS, and Western blot analyses were used to study the response of endometrial cancer cells to tramadol. JC-1 and seahorse metabolic flux assays were used to detect the effect of tramadol on mitochondria in endometrial cancer cells. Combination index was used to detect the interaction of tramadol with chemotherapy drugs in endometrial cancer cells. In this study, we found that tramadol was able to inhibit proliferation and induce cell cycle arrest, ROS generation, and apoptosis in two types of endometrial cancer cells. In addition, tramadol treatment also induced mitochondrial dysfunction in endometrial cancer cells by causing a loss of mitochondrial membrane potential and a decreased oxygen consumption rate. More importantly, the synergetic effect of tramadol with doxorubicin or cisplatin was further confirmed in endometrial cancer cells by the results of the combination index and apoptosis assay. In summary, our findings indicate that tramadol has an antitumor effect on endometrial cancer cells, which might serve as a potential adjuvant therapy strategy for endometrial cancer.


Assuntos
Neoplasias do Endométrio , Tramadol , Feminino , Humanos , Tramadol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Mitocôndrias/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias do Endométrio/metabolismo , Proliferação de Células , Potencial da Membrana Mitocondrial
4.
Life (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669781

RESUMO

Although endometrial carcinoma is one of the most common gynecological malignancies worldwide, its precise etiology remains unknown. Moreover, no novel adjuvant and/or targeted therapies are currently being developed to achieve greater efficacy for endometrial cancer patients who develop chemotherapeutic drug resistance. In this study, we used three human endometrial cancer cell lines, RL95-2, HEC-1-A, and KLE, to investigate the responsiveness of cisplatin alone and in combination with potential repurposed drugs. We first found that RL95-2 cells were more sensitive to cisplatin than HEC-1-A or KLE cells. The cytotoxicity of cisplatin in RL95-2 cells may reflect its ability to perturb the cell cycle, reactive oxygen species production and autophagy as well as to induce senescence and DNA damage. Similar effects, although not DNA damage, were also observed in HEC-1-A and KLE cells. In addition, downregulation of p53 and/or cyclin D1 may also impact the responsiveness of HEC-1-A and KLE cells to cisplatin. We also observed that resveratrol, trichostatin A (TSA), caffeine, or digoxin increased the apoptotic process of cisplatin toward RL95-2 cells, while amiodarone or TSA increased its apoptotic process toward HEC-1-A cells. The combination index supported the assertion that the combination of cisplatin with caffeine, amiodarone, resveratrol, metformin, digoxin, or TSA increases the cytotoxicity of cisplatin in HEC-1-A cells. These findings suggest potential strategies for enhancing the efficacy of cisplatin to overcome drug resistance in endometrial carcinoma patients.

5.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008502

RESUMO

Endometrial cancer is the most common gynecological cancer worldwide. At present there is no effective screening test for its early detection and no curative treatment for women with advanced-stage or recurrent disease. Overexpression of fatty acid synthase is a common molecular feature of a subgroup of sex steroid-related cancers associated with poor prognoses, including endometrial cancers. Disruption of this fatty acid synthesis leads to cell apoptosis, making it a potential therapeutic target. The saturated fatty acid palmitate reportedly induces lipotoxicity and cell death by inducing oxidative stress in many cell types. Here, we explored the effects of palmitate combined with doxorubicin or cisplatin in the HEC-1-A and RL95-2 human endometrial cancer cell lines. The results showed that physiological concentrations of exogenous palmitate significantly increased cell cycle arrest, DNA damage, autophagy, and apoptosis in both RL95-2 and HEC-1-A cells. It also increased the chemosensitivity of both cell types. Notably, we did not observe that palmitate lipotoxicity reflected increased levels of reactive oxygen species, suggesting palmitate acts via a different mechanism in endometrial cancer. This study thus provides a potential therapeutic strategy in which palmitate is used as an adjuvant in the treatment of endometrial cancer.


Assuntos
Cisplatino/farmacologia , Doxorrubicina/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Palmitatos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Chem Commun (Camb) ; 48(28): 3436-8, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22358389

RESUMO

A nano-scale decanuclear Zn(II) circular helicate is synthesized without the aid of counteranions during the assembly process, and can be totally disassembled into its reactants by specific anions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...