Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2352435, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38703011

RESUMO

Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.


Assuntos
Sorogrupo , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Streptococcus suis/patogenicidade , Streptococcus suis/genética , Streptococcus suis/classificação , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/isolamento & purificação , Animais , Suínos , Humanos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Virulência , Camundongos , Genoma Bacteriano , Peixe-Zebra , Antibacterianos/farmacologia , Filogenia , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética
2.
Microbes Infect ; : 105335, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582147

RESUMO

Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.

3.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578304

RESUMO

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Streptococcus suis/classificação , Streptococcus suis/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia , China/epidemiologia , Humanos , Virulência , Animais , Camundongos , Feminino , Genômica , Fatores de Virulência/genética
4.
Animals (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396540

RESUMO

Streptococcus suis is an important zoonotic pathogen that can cause meningitis and septicemia in swine and humans. Among numerous pathogenic serotypes, S. suis serotype 8 has distinctive characteristics such as a high detection rate and causing multi-host infection. There is no complete genome of serotype 8 strains so far. In this study, the complete genome of two S. suis serotype 8 strains, virulent strain 2018WUSS151 and non-virulent strain WUSS030, were sequenced. Comparative genomic analysis showed that the homology of the two genomes reaches 99.68%, and the main difference is the distinctive prophages. There are 83 genes unique to virulent strain 2018WUSS151, including three putative virulence-associated genes (PVGs). Two PVGs, padR and marR, are passenger genes in ISSsu2 family transposons that are able to form circular DNA intermediates during transposition, indicating the possibility of horizontal transmission among S. suis strains. The deletion mutant of PVGs marR or atpase attenuated the virulence of serotype 2 virulent SC070731 in a mouse infection model, confirming their role in S. suis virulence. These findings contribute to clarifying the genomic characterization of S. suis serotype 8 and S. suis pathogenesis.

5.
Microbes Infect ; : 105307, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309574

RESUMO

Bacterial DeoR family transcription regulators regulate multiple physiological processes. Little is known about the function of DeoR family regulators in streptococci. Here, we identified a novel DeoR family regulator, GlpR, from Streptococcus suis, a pathogen causing severe diseases in pigs and humans. GlpR was involved in glycerol utilization and exhibited specific signature residues at positions 30-31 (KV) which are crucial for DNA binding. Deletion of glpR (ΔglpR) showed a significant increase in relative growth rate in glycerol medium compared to the wild-type (WT) and complementary strains (CΔglpR). Employing RNA-seq analysis, ß-galactosidase activity analysis, and electrophoretic mobility shift assay, we discovered that GlpR directly represses the expression of glycerol metabolism-related genes pflB2, pflA1, and fsaA, encoding pyruvate formate-lyase and its activating enzyme, and fructose-6-phosphate aldolase, respectively. Compared to WT and CΔglpR, ΔglpR showed a reduced survival rate under oxidative stress and in murine macrophages and attenuated virulence in mice. GlpR probably enhances oxidative stress resistance and virulence in S. suis by functioning as a glycerol metabolic repressor decreasing energy consumption. These findings contribute to a better understanding of S. suis pathogenesis and enrich our knowledge of the biological functions of DeoR family regulators in streptococci.

6.
Virulence ; 14(1): 2249789, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621097

RESUMO

Streptococcus suis is a bacterium that can cause infections in pigs and humans. Although oxidative stress is common occurrence during bacterial growth and infection, the regulation networks of S. suis under oxidative stress remain poorly understood. To address this, we utilized RNA-Seq to reveal the transcriptional landscape of S. suis in response to H2O2 stress. We identified novel genes responsible for S. suis resistance to oxidative stress, including those involved in DNA repair or protection, and essential for the biosynthesis of amino acids and nucleic acids. In addition, we found that a novel aquaporin, Aagp, belonging to atypical aquaglyceroporins and widely distributed in diverse S. suis serotypes, plays a crucial role during H2O2 stress. By performing oxidative stress assays and measuring the intracellular H2O2 concentrations of the wild-type strain and Aagp mutants during H2O2 stress, we found that Aagp facilitated H2O2 efflux. Additionally, we found that Aagp might be involved in glycerol transport, as shown by the growth inhibition and H2O2 production in the presence of glycerol. Mice infection experiments indicated that Aagp contributed to S. suis virulence. This study contributes to understanding the mechanism of S. suis oxidative stress response, S. suis pathogenesis, and the function of aquaporins in prokaryotes.


Assuntos
Aquaporinas , Streptococcus suis , Humanos , Animais , Camundongos , Suínos , Peróxido de Hidrogênio/farmacologia , Streptococcus suis/genética , Glicerol , Virulência , Aquaporinas/genética
7.
Pathogens ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111501

RESUMO

Streptococcus pasteurianus is a zoonotic pathogen causing meningitis and bacteremia in animals and humans. A lack of accurate and convenient detection methods hinders preventing and controlling diseases caused by S. pasteurianus. Additionally, there is limited knowledge about its pathogenicity and antimicrobial resistance characteristics, as there are only three complete genome sequences available. In this study, we established a multiplex PCR assay for the detection of S. pasteurianus, which was applied to six fecal samples from cattle with diarrhea and 285 samples from healthy pigs. Out of the samples tested, 24 were positive, including 5 from pig tonsils, 18 from pig hilar lymph nodes, and 1 from cattle feces. Two strains were isolated from positive samples, and their complete genomes were sequenced. The two strains were non-virulent in mice and multidrug-resistant by the antimicrobial susceptibility test. We first found the presence of genes tet(O/W/32/O) and lsa(E) in S. pasteurianus, leading to resistance to lincosamides and tetracyclines. The convenient and specific multiplex PCR assay provides essential technical support for epidemiological research, and the complete genome sequence of two non-virulent strains contributes to understanding this zoonotic bacterium's genomic characteristics and pathogenesis.

8.
Virulence ; 13(1): 1455-1470, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36031944

RESUMO

Streptococcus suis epidemic strains were responsible for two outbreaks in China and possessed increased pathogenicity which was featured prominently by inducing an excessive inflammatory response at the early phase of infection. To discover the critical genes responsible for the pathogenicity increase of S. suis epidemic strains, the genome-wide transcriptional profiles of epidemic strain SC84 were investigated at the early phase of interaction with BV2 cells. The overall low expression levels of 89K pathogenicity island (PAI) and 129 known virulence genes in the SC84 interaction groups indicated that its pathogenicity increase should be attributed to novel mechanisms. Using highly pathogenic strain P1/7 and intermediately pathogenic strain 89-1591 as controls, 11 pathogenicity increase crucial genes (PICGs) and 38 pathogenicity increase-related genes (PIRGs) were identified in the SC84 incubation groups. The PICGs encoded proteins related to the methionine biosynthesis/uptake pathway and played critical roles in the pathogenicity increase of epidemic strains. A high proportion of PIRGs encoded surface proteins related to host cell adherence and immune escape, which may be conducive to the pathogenicity increase of epidemic strains by rapidly initiating infection. The fact that none of PICGs and PIRGs belonged to epidemic strain-specific gene indicated that the pathogenicity increase of epidemic strain may be determined by the expression level of genes, rather than the presence of them. Our results deepened the understanding on the mechanism of the pathogenicity increase of S. suis epidemic strains and provided novel approaches to control the life-threatening infections of S. suis epidemic strains.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Ilhas Genômicas , Humanos , Transcriptoma , Virulência
9.
Virulence ; 13(1): 1304-1314, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35903019

RESUMO

Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, causes swine diseases and human cases of streptococcal toxic shock syndrome. RNA-binding proteins (RBPs) can modulate gene expression through post-transcriptional regulation. In this study, we identified an RBP harbouring an S1 domain, named RbpA, which facilitated SS2 adhesion to host epithelial cells and contributed to bacterial pathogenicity. Comparative proteomic analysis identified 145 proteins that were expressed differentially between ΔrbpA strain and wild-type strain, including several virulence-associated factors, such as the extracellular protein factor (EF), SrtF pilus, IgA1 protease, SBP2 pilus, and peptidoglycan-binding LysM' proteins. The mechanisms underlying the regulatory effects of RbpA on their encoding genes were explored, and it was found that RbpA regulates gene expression through diverse mechanisms, including post-transcriptional regulation, and thus acts as a global regulator. These results partly reveal the pathogenic mechanism mediated by RbpA, improving our understanding of the regulatory systems of S. suis and providing new insights into bacterial pathogenicity.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Proteômica , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sorogrupo , Infecções Estreptocócicas/microbiologia , Suínos , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
PLoS Pathog ; 18(7): e1010710, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35853077

RESUMO

Streptococcus suis (S. suis) is one of the important pathogens that cause bacterial meningitis in pigs and humans. Evading host immune defences and penetrating the blood-brain barrier (BBB) are the preconditions for S. suis to cause meningitis, while the underlying mechanisms during these pathogenic processes are not fully understood. By detecting the red blood and white blood cells counts, IL-8 expression, and the pathological injury of brain in a mouse infection model, a serine-rich repeat (SRR) glycoprotein, designated as SssP1, was identified as a critical facilitator in the process of causing meningitis in this study. SssP1 was exported to assemble a fimbria-like component, thus contributed to the bacterial adhesion to and invasion into human brain microvascular endothelial cells (HBMECs), and activates the host inflammatory response during meningitis but is not involved in the actin cytoskeleton rearrangement and the disruption of tight junctions. Furthermore, the deletion of sssP1 significantly attenuates the ability of S. suis to traverse the BBB in vivo and in vitro. A pull-down analysis identified vimentin as the potential receptors of SssP1 during meningitis and following Far-Western blot results confirmed this ligand-receptor binding mediated by the NR2 (the second nonrepeat region) region of SssP1. The co-localisation of vimentin and S. suis observed by laser scanning confocal microscopy with multiplex fluorescence indicated that vimentin significantly enhances the interaction between SssP1 and BBB. Further study identified that the NR216-781 and NR1711-2214 fragments of SssP1 play critical roles to bind to the BBB depending on the sialylation of vimentin, and this binding is significantly attenuated when the antiserum of NR216-781 or NR1711-2214 blocked the bacterial cells, or the vimentin antibody blocked the BBB. Similar binding attenuations are observed when the bacterial cells were preincubated with the vimentin, or the BBB was preincubated with the recombinant protein NR216-781, NR1711-2214 or sialidase. In conclusion, these results reveal a novel receptor-ligand interaction that enhances adhesion to and penetration of the BBB to cause bacterial meningitis in the S. suis infection and highlight the importance of vimentin in host-pathogen interactions.


Assuntos
Meningites Bacterianas , Infecções Estreptocócicas , Streptococcus suis , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Ligantes , Meningites Bacterianas/microbiologia , Camundongos , Infecções Estreptocócicas/microbiologia , Suínos , Vimentina
11.
Transbound Emerg Dis ; 69(5): e2495-e2505, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35560732

RESUMO

Streptococcus suis, the leading causative agent of swine streptococcosis, is considered as a severe zoonotic and foodborne pathogen for humans. Characteristics of population structure and pathogenicity of S. suis vary significantly by serotypes. As one of the main pathogenic serotypes causing clinical disease in pigs, very little is known about the pathogenicity, population structure, and antimicrobial resistance of S. suis serotype 8 (SS8). In this study, the genome of 26 SS8 strains isolated from healthy and diseased pigs was sequenced. Together with 38 sequences from NCBI, we found that SS8 population was clustered into 12 sequence types (ST) and 4 minimum core genome (MCG) groups, linked to the geographical distribution. Noteworthily, 10 strains belonged to MCG group 1 which was defined to possess the capacity to cause global outbreaks in our previous study. We found that 75% (9/12) of representative SS8 strains were virulent in mice and zebrafish, including all ST1241 strains. No virulence indicators were identified from 67 putative virulence-associated genes mainly identified among pathogenic serotype 2 strains. Instead, we found that the genotype of some of these genes was correlated to their evolution. All 26 isolates were classified as multidrug-resistant strains by antimicrobial susceptibility testing. The high carrying rate of tetO and ermB, mainly disseminated by integrative mobilizable elements, contributed to the prevalent resistance phenotypes to macrolides, lincosamides and tetracyclines. These findings indicated that the pathogenic potential of SS8 cannot be ignored and provided valuable information for SS8 surveillance.


Assuntos
Doenças dos Roedores , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Humanos , Lincosamidas , Macrolídeos , Camundongos , Doenças dos Roedores/tratamento farmacológico , Sorogrupo , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Suínos , Doenças dos Suínos/epidemiologia , Tetraciclinas , Peixe-Zebra
12.
Virulence ; 13(1): 781-793, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35481413

RESUMO

Streptococcus suis can cause severe infections in pigs and humans. The tonsils of pigs are major niches for S. suis, and different serotypes of S. suis can be found in the same tonsil. Pig tonsil colonization by S. suis is believed to be an important source of infection for humans and pigs. However, how S. suis competes for a stable tonsil niche is unknown. Here, we found that S. suis strain WUSS351, isolated from a healthy pig tonsil, is virulent and multidrug-resistant. The ABC transporter system SstFEG, conferring resistance to bacitracin, was reported to confer a competitive survival advantage in vivo. In addition, strain WUSS351 has several antimicrobial systems, including a novel type VII secretion system (T7SS), lantibiotic bacteriocin, and lactococcin972-like bacteriocin Lcn351. Bacterial competition experiments demonstrated T7SS-mediated cell contact-dependent antagonism of S. suis. Antibacterial activity analysis and 16S rRNA gene sequencing of the culture-independent and culture-dependent pig tonsillar microbiome revealed that Lcn351 mainly targets S. suis, one of the core microbiomes in pig tonsils. Taken together, our results revealed the mechanism of the stable persistence of S. suis in the tonsil niche, which might have important implications for S. suis epidemiology, potentially influencing strain prevalence and disease progression.


Assuntos
Bacteriocinas , Streptococcus suis , Animais , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Tonsila Palatina/microbiologia , RNA Ribossômico 16S , Suínos
13.
Transbound Emerg Dis ; 69(5): 2609-2620, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34871467

RESUMO

Streptococcus pasteurianus, an underreported opportunistic pathogen, is considered an increasingly recognized cause of meningitis and bacteremia in many animals and humans worldwide. However, except for some epidemiological studies, there is no report about the gene-deletion mutagenesis, virulence factors, reservoir niches or animal infection models for this pathogen. In this study, we first isolated an S. pasteurianus strain from a newly weaned piglet's brain with meningitis. The genomic sequence of this swine isolate WUSP067 shared high homology with that of two human strains. The comparative genome analysis showed that strain WUSP067 contained a fucose utilization cluster absent in human strains, and it shared 91% identity with that of an integrative and conjugative element (ICE) ICEssuZJ20091101-2 from Streptococcus suis, another important swine bacterial pathogen. Strain WUSP067 was resistant to erythromycin, tulathromycin, lincomycin, clindamycin, doxycycline and gentamycin, and ICEs are vehicles for harbouring antimicrobial resistance genes. The infection model was established using the 3-week-old newly weaned ICR mice. The 50% lethal dose value of strain WUSP067 was 4.0 × 107 colony-forming units per mouse. The infected mice showed severe signs of meningitis and pathological changes in brains. Furthermore, the capsule-deficient mutant was generated using natural transformation, and we showed that capsule was an essential virulence factor for S. pasteurianus. In addition, we found that tonsils and hilar lymph nodes of healthy pigs may be reservoir niches for this bacterium. Thus, our study provided valuable information about the pathogenetic characteristics and antimicrobial resistance of S. pasteurianus and paved the way for studying its pathogenesis.


Assuntos
Meningite , Doenças dos Roedores , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Clindamicina , Doxiciclina , Eritromicina , Fucose , Gentamicinas , Humanos , Meningite/veterinária , Camundongos , Camundongos Endogâmicos ICR , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus , Streptococcus suis/genética , Suínos , Doenças dos Suínos/microbiologia , Fatores de Virulência/genética
14.
Front Microbiol ; 13: 1074844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620002

RESUMO

Streptococcus suis, an emerging zoonotic pathogen, is important reservoirs of antibiotic resistance genes that play critical roles in the horizontal transfer of corresponding resistances. In the present study, 656 antibiotic resistance (AR) genes were detected in 154 of 155 genomes of S. suis strains isolated from the nasopharynx of slaughtered pigs and the lungs of diseased pigs in China. The AR genes were clustered into 11 categories, consisting of tetracycline, macrolides, lincosamide, streptogramin, aminoglycoside, trimethoprim, amphenicols, nucleoside, quinupristin/dalfopristin, glycopeptide, and oxazolidinones resistance genes. In order to investigate the transmission patterns of the AR genes, AR genes-associated the mobile genetic elements (MGEs) were extracted and investigated. Twenty ICEs, one defective ICE, one tandem ICE, and ten prophages were found, which mainly carried tetracycline, macrolides/lincosamides/streptogramin (MLS), and aminoglycosides resistance genes. Three types of DNA cargo with AR genes were integrated into specific sites of ICEs: integrative mobilizable elements (IMEs), cis-IMEs (CIMEs), and transposon Tn916. Obvious differences in AR gene categories were found among the three cargo types. IMEs mainly harbored tetracycline and MLS resistance genes. CIMEs mainly carried aminoglycoside resistance genes, while transposon Tn916 carried only the tet (M) gene. Nearly all AR genes in ICEs were carried by IMEs and CIMEs. IMEs were prevalent and were also detected in additional 29 S. suis genomes. The horizontal transfer of IMEs and CIMEs may play critical role in ICE evolution and AR gene transmission in the S. suis population. Our findings provide novel insights into the transmission patterns of AR genes and the evolutionary mechanisms of ICEs in S. suis.

15.
Emerg Microbes Infect ; 10(1): 1960-1974, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34635002

RESUMO

Streptococcus suis is one of the important emerging zoonotic pathogens. Serotype 2 is most prevalent in patients worldwide. In the present study, we first isolated one S. suis serotype 7 strain GX69 from the blood culture of a patient with septicemia complicated with pneumonia in China. In order to deepen the understanding of S. suis serotype 7 population characteristics, we investigated the phylogenetic structure, genomic features, and virulence of S. suis serotype 7 population, including 35 strains and 79 genomes. Significant diversities were revealed in S. suis serotype 7 population, which were clustered into 22 sequence types (STs), five minimum core genome (MCG) groups, and six lineages. Lineages 1, 3a, and 6 were mainly constituted by genomes from Asia. Genomes of Lineages 2, 3b, and 5a were mainly from Northern America. Most of genomes from Europe (41/48) were clustered into Lineage 5b. In addition to strain GX69, 13 of 21 S. suis serotype 7 representative strains were classified as virulent strains using the C57BL/6 mouse model. Virulence-associated genes preferentially present in highly pathogenic S. suis serotype 2 strains were not suitable as virulence indicators for S. suis serotype 7 strains. Integrative mobilizable elements were widespread and may play a critical role in disseminating antibiotic resistance genes of S. suis serotype 7 strains. Our study confirmed S. suis serotype 7 is a non-negligible pathotype and deepened the understanding of the population structure of S. suis serotype 7, which provided valuable information for the improved surveillance of this serotype.


Assuntos
Bacteriemia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Pneumonia Bacteriana/microbiologia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Idoso , Animais , Antibacterianos/farmacologia , Zoonoses Bacterianas/microbiologia , China , Modelos Animais de Doenças , Feminino , Humanos , Sequências Repetitivas Dispersas/genética , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/microbiologia , Virulência , Fatores de Virulência/genética
16.
Microbiol Res ; 250: 126814, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34256310

RESUMO

Streptococcus suis (S. suis) is a major bacterial pathogen in the swine industry and an emerging zoonotic agent. S. suis produces an important extracellular component, capsular polysaccharide (CPS), based on which dozens of serotypes have been identified. Through virulence genotyping, we revealed the relatedness between subpopulations of S. suis serotype 2 (SS2), S. suis serotype 3 (SS3) and S. suis serotype 7 (SS7) strains despite their serotype differences. Multilocus sequence typing (MLST) was used to characterize the whole S. suis population and revealed capsule switching between S. suis strains. Importantly, capsule switching occurred in the SS2, SS3 and SS7 strains belonging to CC28 and CC29, which are phylogenetically distinct from the main CC1 SS2 lineage. To further explore capsule switching in S. suis, comparative genomic analyses were performed using available complete S. suis genomes. Phylogenetic analyses suggested that the SS2 strains could be divided into two clades (1 and 2), and those classified into clade 2 colocalized with SS3 and SS7 strains, in accordance with the above virulence genotyping and MLST analyses. Clade 2 SS2 strains presented high genetic similarity to SS3 and SS7 and shared common competence and defensive elements with them but were significantly different from Clade 1 SS2 strains. Notably, although the cps loci shared by Clade 1 and 2 SS2 strains were almost identical, a specific region of the cps locus of strain NSUI002 (Clade 2 SS2) could be found in the SS3 cps locus but not in the Clade 1 SS2 strain. These data indicated that the SS2 strains in CC28 and CC29 might have acquired the cps locus through capsule switching, which could explain the distinct genetic lineages within the SS2 population.


Assuntos
Cápsulas Bacterianas/genética , Genoma Bacteriano , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Animais , Cápsulas Bacterianas/fisiologia , Técnicas de Tipagem Bacteriana , Técnicas de Genotipagem , Tipagem de Sequências Multilocus , Filogenia , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/classificação , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética
17.
Vet Microbiol ; 259: 109149, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34147764

RESUMO

Streptococcus suis is a zoonotic pathogen that can cause invasive infections in humans and pigs. The S. suis cps31 strains (SS31) were frequently isolated from healthy or diseased pigs and one human infection case caused by SS31 was reported in Thailand in 2015. However, except for a few epidemiologic studies, little information is available for SS31. To characterize SS31, a total of 75 SS31 strains were analyzed, including 52 strains that were isolated from healthy or diseased pigs and 23 strains whose information was accessed from NCBI. The MLST analysis showed that SS31 exhibited high heterogeneity. The phylogenetic analysis and minimum core-genome (MCG) classification revealed that 75 strains were clustered into 3 lineages. Strains from NCBI mainly at Lineage 2 belong to MCG7-3, and most of strains from China at Lineage 3 belong to MCG7-2. This finding indicated that their evolutionary path was different. All SS31 strains were resistant to more than three classes of antimicrobial agents, and major antimicrobial resistance genes for strains from Lineage 3 were carried by prophages. This observation is different from the previous observation that integrative conjugative elements and integrative and mobilizable elements are major vehicles of antimicrobial resistance genes for S. suis. In addition to strains isolated from diseased pigs, seven of 47 strains isolated from clinically healthy pigs were also pathogenic in a zebrafish infection model. These findings reveal unique characteristics of SS31 and contribute to establishing public health surveillance for SS31 and clarifying the diversity of S. suis.


Assuntos
Antibacterianos/farmacologia , Filogenia , Infecções Estreptocócicas/veterinária , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/patogenicidade , Animais , Farmacorresistência Bacteriana Múltipla , Evolução Molecular , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Infecções Estreptocócicas/microbiologia , Streptococcus suis/classificação , Streptococcus suis/genética , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética , Peixe-Zebra
18.
Virulence ; 11(1): 1539-1556, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33138686

RESUMO

The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Translocação Bacteriana/genética , Parede Celular/metabolismo , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Endopeptidases/genética , Endopeptidases/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Streptococcus suis/metabolismo , Suínos , Doenças dos Suínos/microbiologia , Virulência
19.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32690636

RESUMO

Streptococcus agalactiae (group B streptococcus [GBS]) has received continuous attention for its involvement in invasive infections and its broad host range. Transcriptional regulators have an important impact on bacterial adaptation to various environments. Research on transcriptional regulators will shed new light on GBS pathogenesis. In this study, we identified a novel XRE-family transcriptional regulator encoded on the GBS genome, designated XtgS. Our data demonstrate that XtgS inactivation significantly increases bacterial survival in host blood and animal challenge test, suggesting that it is a negative regulator of GBS pathogenicity. Further transcriptomic analysis and quantitative reverse transcription-PCR (qRT-PCR) mainly indicated that XtgS significantly repressed transcription of its upstream gene pseP Based on electrophoretic mobility shift and lacZ fusion assays, we found that an XtgS homodimer directly binds a palindromic sequence in the pseP promoter region. Meanwhile, the PseP and XtgS combination naturally coexists in diverse Streptococcus genomes and has a strong association with sequence type, serotype diversification and host adaptation of GBS. Therefore, this study reveals that XtgS functions as a transcriptional regulator that negatively affects GBS virulence and directly represses PseP expression, and it provides new insights into the relationships between transcriptional regulator and genome evolution.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Infecções Estreptocócicas/metabolismo , Streptococcus/classificação , Streptococcus/genética , Streptococcus agalactiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Virulência/genética , Peixe-Zebra
20.
Pathogens ; 9(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443590

RESUMO

Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...