Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Biotechnol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079964

RESUMO

Although chimeric antigen receptor (CAR) T cell therapies have demonstrated promising clinical outcomes, durable remissions remain limited. To extend the efficacy of CAR T cells, we develop a CAR enhancer (CAR-E), comprising a CAR T cell antigen fused to an immunomodulatory molecule. Here we demonstrate this strategy using B cell maturation antigen (BCMA) CAR T cells for the treatment of multiple myeloma, with a CAR-E consisting of the BCMA fused to a low-affinity interleukin 2 (IL-2). This selectively induces IL-2 signaling in CAR T cells upon antigen-CAR binding, enhancing T cell activation and antitumor activity while reducing IL-2-associated toxicities. We show that the BCMA CAR-E selectively binds CAR T cells and increases CAR T cell proliferation, clearance of tumor cells and development of memory CAR T cells. The memory cells retain the ability to re-expand upon restimulation, effectively controlling tumor growth upon rechallenge. Mechanistic studies reveal the involvement of both CAR and IL-2 receptor endodomains in the CAR-E mechanism of action. The CAR-E approach avoids the need for specific engineering and enables CAR T cell therapy with lower cell doses.

3.
Curr Opin Oncol ; 36(3): 136-142, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573202

RESUMO

PURPOSE OF REVIEW: Neoadjuvant (presurgical) immune checkpoint blockade (ICB) has shown promising clinical activity in head and neck cancer and other cancers, including FDA approvals for neoadjuvant approaches for triple-negative breast cancer and nonsmall cell lung cancer. Here we will review recent data from clinical trials in head and neck squamous cell carcinoma (HNSCC), including mechanistic studies highlighting local and systemic effects on T cell-mediated immunity. RECENT FINDINGS: A series of clinical trials of neoadjuvant ICB have documented evidence of clinical activity, including clinical to pathologic downstaging and pathologic response in a subset of patients. Also, emerging data suggest improved survival outcomes for patients with tumors responsive to neoadjuvant ICB. In depth mechanistic studies have documented intra-tumoral expansion of CD8 T cell populations characterized by tissue residency and cytotoxicity programs. Treatment also leads to expansion of activated CD8 T cells in the blood, many of which share TCR sequences with tumor-infiltrating T cells. The frequency of activated circulating CD8 T cell populations is correlated with the degree of pathologic response within tumors. SUMMARY: Even a short duration of neoadjuvant immunotherapy can enhance local and systemic tumor-reactive T cell populations. Downstaging induced by neoadjuvant ICB can reduce the extent of surgical resection in this anatomically sensitive location.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Terapia Neoadjuvante , Inibidores de Checkpoint Imunológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
4.
Front Immunol ; 15: 1368586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550583

RESUMO

MICA and MICB are Class I MHC-related glycoproteins that are upregulated on the surface of cells in response to stress, for instance due to infection or malignant transformation. MICA/B are ligands for NKG2D, an activating receptor on NK cells, CD8+ T cells, and γδ T cells. Upon engagement of MICA/B with NKG2D, these cytotoxic cells eradicate MICA/B-positive targets. MICA is frequently overexpressed on the surface of cancer cells of epithelial and hematopoietic origin. Here, we created nanobodies that recognize MICA. Nanobodies, or VHHs, are the recombinantly expressed variable regions of camelid heavy chain-only immunoglobulins. They retain the capacity of antigen recognition but are characterized by their stability and ease of production. The nanobodies described here detect surface-disposed MICA on cancer cells in vitro by flow cytometry and can be used therapeutically as nanobody-drug conjugates when fused to the Maytansine derivative DM1. The nanobody-DM1 conjugate selectively kills MICA positive tumor cells in vitro.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Linfócitos T CD8-Positivos , Anticorpos de Domínio Único/uso terapêutico , Antígenos de Histocompatibilidade Classe I , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias/diagnóstico , Neoplasias/terapia , Imunoterapia
6.
Blood ; 143(12): 1124-1138, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38153903

RESUMO

ABSTRACT: The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Animais , Camundongos , Humanos , Linfócitos T CD4-Positivos , Imunidade Celular , Linfócitos T CD8-Positivos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética
7.
Cell Rep ; 42(12): 113564, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38100350

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA