Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Can J Neurol Sci ; : 1-13, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433571

RESUMO

PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.

2.
Nucl Med Biol ; 128-129: 108875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199184

RESUMO

INTRODUCTION: Copper-64 (64Cu, t1/2 = 12.7 h) is a positron emitter well suited for theranostic applications with beta-emitting 67Cu for targeted molecular imaging and radionuclide therapy. The present work aims to evaluate the radionuclidic purity and radiochemistry of 64Cu produced via the 68Zn(p,nα)64Cu nuclear reaction. Macrocyclic chelators DOTA, NOTA, TETA, and prostate-specific membrane antigen ligand PSMA I&T were radiolabeled with purified 64Cu and tested for in vitro stability. [64Cu]Cu-PSMA I&T was used to demonstrate in vivo PET imaging using 64Cu synthesized via the 68Zn(p,nα)64Cu production route and its suitability as a theranostic imaging partner alongside 67Cu therapy. METHODS: 64Cu was produced on a 24 MeV TR-24 cyclotron at a beam energy of 23.5 MeV and currents up to 70 µA using 200 mg 68Zn encapsulated within an aluminum­indium-graphite sealed solid target assembly. 64Cu semi-automated purification was performed using a NEPTIS Mosaic-LC synthesis unit employing CU, TBP, and TK201 (TrisKem) resins. Radionuclidic purity was measured by HPGe gamma spectroscopy, while ICP-OES assessed elemental purity. Radiolabeling was performed with NOTA at room temperature and DOTA, TETA, and PSMA I&T at 95 °C. 64Cu incorporation was studied by radio-TLC. 64Cu in vitro stability of [64Cu]Cu-NOTA, [64Cu]Cu-DOTA, [64Cu]Cu-TETA, and [64Cu]Cu-PSMA I&T was assessed at 37 °C from 0 to 72 h in human blood serum. Preclinical PET imaging was performed at 1, 24, and 48 h post-injection with [64Cu]Cu-PSMA I&T in LNCaP tumor-bearing mice and compared with [68Ga]Ga-PSMA I&T. RESULTS: Maximum purified activity of 4.9 GBq [64Cu]CuCl2 was obtained in 5 mL of pH 2-3 solution, with 2.9 GBq 64Cu concentrated in 0.5 mL. HPGe gamma spectroscopy of purified 64Cu detected <0.3 % co-produced 67Cu at EOB with no other radionuclidic impurities. ICP-OES elemental analysis determined <1 ppm Al, Zn, In, Fe, and Cu in the [64Cu]CuCl2 product. NOTA, DOTA, TETA, and PSMA I&T were radiolabeled with 64Cu, resulting in maximum molar activities of 164 ± 6 GBq/µmol, 155 ± 31 GBq/µmol, 266 ± 34 GBq/µmol, and 117 ± 2 GBq/µmol, respectively. PET imaging in PSMA-expressing LNCaP xenografts resulted in high tumor uptake (SUVmean = 1.65 ± 0.1) using [64Cu]Cu-PSMA I&T, while [68Ga]Ga-PSMA I&T yielded an SUVmean of 0.76 ± 0.14 after 60 min post-injection. CONCLUSIONS: 64Cu was purified in a small volume amenable for radiolabeling, with yields suitable for preclinical and clinical application. The 64Cu production and purification process and the favourable PET imaging properties confirm the 68Zn(p,nα)64Cu nuclear reaction as a viable 64Cu production route for facilities with access to a higher energy proton cyclotron, compared to using expensive 64Ni target material and the 64Ni(p,n)64Cu nuclear reaction. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our 64Cu production technique provides an alternative production route with the potential to improve 64Cu availability for preclinical and clinical studies alongside 67Cu therapy.


Assuntos
Radioisótopos de Gálio , Neoplasias , Ureia/análogos & derivados , Masculino , Humanos , Animais , Camundongos , Análise Custo-Benefício , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Zinco
3.
Bioconjug Chem ; 35(2): 232-244, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38215469

RESUMO

Transition-metal-mediated bioconjugation chemistry has been used extensively to design and synthesize molecular probes to visualize, characterize, and quantify biological processes within intact living organisms at the cellular and subcellular levels. We demonstrate the development and validation of chemoselective [18F]fluoro-arylation chemistry of cysteine residues using Pd-mediated S-arylation chemistry with 4-[18F]fluoroiodobenzene ([18F]FIB) as an aryl electrophile. The novel bioconjugation technique proceeded in excellent radiochemical yields of 73-96% within 15 min under ambient and aqueous reaction mixture conditions, representing a versatile novel tool for decorating peptides and peptidomimetics with short-lived positron emitter 18F. The chemoselective S-arylation of several peptides and peptidomimetics containing multiple reactive functional groups confirmed the versatility and functional group compatibility. The synthesis and radiolabeling of a novel prostate-specific membrane antigen (PSMA) binding radioligand [18F]6 was accomplished using the novel labeling protocol. The validation of radioligand [18F]6 in a preclinical prostate cancer model with PET resulted in favorable accumulation and retention in PSMA-expressing LNCaP tumors. At the same time, a significantly lower salivary gland uptake was observed compared to clinical PSMA radioligand [18F]PSMA-1007. This finding coincides with ongoing discussions about the molecular basis of the off-target accumulation of PSMA radioligands currently used for clinical imaging and therapy of prostate cancer.


Assuntos
Peptidomiméticos , Neoplasias da Próstata , Masculino , Humanos , Paládio , Cisteína , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície , Peptídeos , Compostos Radiofarmacêuticos/química , Tomografia por Emissão de Pósitrons/métodos
4.
Brain Behav Immun ; 115: 374-393, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914099

RESUMO

Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS. Brain tissues from persons with P-MS showed significantly increased expression of GSDMD, NINJ1, IL-1ß, and -18 within chronic active demyelinating lesions compared to MS normal appearing white matter and nonMS (control) white matter. Conditioned media (CM) from stimulated GSDMD+/+ human macrophages caused significantly greater cytotoxicity of oligodendroglial and neuronal cells, compared to CM from GSDMD-/- macrophages. Oligodendrocytes and CNS macrophages displayed increased Gsdmd immunoreactivity in the central corpus callosum (CCC) of cuprizone (CPZ)-exposed Gsdmd+/+ mice, associated with greater demyelination and reduced oligodendrocyte precursor cell proliferation, compared to CPZ-exposed Gsdmd-/- animals. CPZ-exposed Gsdmd+/+ mice exhibited significantly increased G-ratios and reduced axonal densities in the CCC compared to CPZ-exposed Gsdmd-/- mice. Proteomic analyses revealed increased brain complement C1q proteins and hexokinases in CPZ-exposed Gsdmd-/- animals. [18F]FDG PET imaging showed increased glucose metabolism in the hippocampus and whole brain with intact neurobehavioral performance in Gsdmd-/- animals after CPZ exposure. GSDMD activation in CNS macrophages and oligodendrocytes contributes to inflammatory demyelination and neuroaxonal injury, offering mechanistic and potential therapeutic insights into P-MS pathogenesis.


Assuntos
Gasderminas , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Cuprizona/uso terapêutico , Cuprizona/toxicidade , Modelos Animais de Doenças , Gasderminas/metabolismo , Camundongos Endogâmicos C57BL , Microglia/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Fatores de Crescimento Neural , Oligodendroglia , Proteômica
5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004486

RESUMO

This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.

6.
Nucl Med Biol ; 124-125: 108383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651917

RESUMO

BACKGROUND: Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [18F]FBNA (N-(4-[18F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an 18F-labeled analogue of antiparasitic drug benznidazole. The present study aimed to analyze its radio-pharmacological properties and systematically compare its PET imaging profiles with [18F]FMISO and [18F]FAZA in preclinical triple-negative (MDA-MB231) and estrogen receptor-positive (MCF-7) breast cancer models. METHODS: In vitro cellular uptake experiments were carried out in MDA-MB321 and MCF-7 cells under normoxic and hypoxic conditions. Metabolic stability in vivo was determined in BALB/c mice using radio-TLC analysis. Dynamic PET experiments over 3 h post-injection were performed in MDA-MB231 and MCF-7 tumour-bearing mice. Those PET data were used for kinetic modelling analysis utilizing the reversible two-tissue-compartment model. Autoradiography was carried out in tumour tissue slices and compared to HIF-1α immunohistochemistry. Detailed ex vivo biodistribution was accomplished in BALB/c mice, and this biodistribution data were used for dosimetry calculation. RESULTS: Under hypoxic conditions in vitro cellular uptake was elevated in both cell lines, MCF-7 and MDA-MB231, for all three radiotracers. After intravenous injection, [18F]FBNA formed two radiometabolites, resulting in a final fraction of 65 ± 9 % intact [18F]FBNA after 60 min p.i. After 3 h p.i., [18F]FBNA tumour uptake reached SUV values of 0.78 ± 0.01 in MCF-7 and 0.61 ± 0.04 in MDA-MB231 tumours (both n = 3), representing tumour-to-muscle ratios of 2.19 ± 0.04 and 1.98 ± 0.15, respectively. [18F]FMISO resulted in higher tumour uptakes (SUV 1.36 ± 0.04 in MCF-7 and 1.23 ± 0.08 in MDA-MB231 (both n = 4; p < 0.05) than [18F]FAZA (0.66 ± 0.11 in MCF-7 and 0.63 ± 0.14 in MDA-MB231 (both n = 4; n.s.)), representing tumour-to-muscle ratios of 3.24 ± 0.30 and 3.32 ± 0.50 for [18F]FMISO, and 2.92 ± 0.74 and 3.00 ± 0.42 for [18F]FAZA, respectively. While the fraction per time of radiotracer entering the second compartment (k3) was similar within uncertainties for all three radiotracers in MDA-MB231 tumours, it was different in MCF-7 tumours. The ratios k3/(k3 + k2) and K1*k3/(k3 + k2) in MCF-7 tumours were also significantly different, indicating dissimilar fractions of radiotracer bound and trapped intracellularly: K1*k3/(k2 + k3) [18F]FMISO (0.0088 ± 0.001)/min, n = 4; p < 0.001) > [18F]FAZA (0.0052 ± 0.002)/min, n = 4; p < 0.01) > [18F]FBNA (0.003 ± 0.001)/min, n = 3). In contrast, in MDA-MB231 tumours, only K1 was significantly elevated for [18F]FMISO. However, this did not result in significant differences for K1*k3/(k2 + k3) for all three 2-nitroimidazoles in MDA-MB231 tumours. CONCLUSION: Novel 2-nitroimidazole PET radiotracer [18F]FBNA showed uptake into hypoxic breast cancer cells and tumour tissue presumably associated with elevated HIF1-α expression. Systematic comparison of PET imaging performance with [18F]FMISO and [18F]FAZA in different types of preclinical breast cancer models revealed a similar tumour uptake profile for [18F]FBNA with [18F]FAZA and, despite its higher lipophilicity, still a slightly higher muscle tissue clearance compared to [18F]FMISO.


Assuntos
Neoplasias da Mama , Nitroimidazóis , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/diagnóstico por imagem , Xenoenxertos , Distribuição Tecidual , Nitroimidazóis/química , Hipóxia , Tomografia por Emissão de Pósitrons/métodos , Hipóxia Celular , Compostos Radiofarmacêuticos
7.
Cancers (Basel) ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37568672

RESUMO

Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody is radiolabeled with a 212Pb/212Bi "in vivo generator", which emits cytotoxic alpha particles. Using microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in tumor growth rate in the 5-10 µCi dose range when compared to the untreated and radiolabeled control antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment was observed. However, administration of higher doses resulted in a biphasic tumor dose response, with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies before the clinical utility of such an approach can be assessed.

8.
ACS Med Chem Lett ; 14(7): 943-948, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465305

RESUMO

We describe N-alkyl carbamoylimidazoles as readily available and highly versatile synthons for synthesizing urea-based prostate-specific membrane antigen (PSMA) inhibitors. Urea formation proceeded in high yields (>80%) at room temperature under aqueous conditions. All novel compounds were tested for their PSMA inhibitory potency in a cell-based radiometric binding assay. Compound 17 was identified as a novel high-affinity PSMA inhibitor (IC50 = 0.013 µM) suitable for developing an 18F-labeled radioligand for PET imaging of PSMA in prostate cancer.

9.
Bioorg Med Chem Lett ; 90: 129345, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217023

RESUMO

We have prepared and tested radioligand [18F]ONO-8430506 ([18F]8) as a novel ATX PET imaging agent derived from highly potent ATX inhibitor ONO-8430506. Radioligand [18F]8 could be prepared in good and reproducible radiochemical yields of 35 ± 5% (n = 6) using late-stage radiofluorination chemistry. ATX binding analysis showed that 9-benzyl tetrahydro-b-carboline 8 has about five times better inhibitory potency than clinical candidate GLPG1690 and somewhat less inhibitory potency than ATX inhibitor PRIMATX. The binding mode for compound 8 inside the catalytic pocket of ATX using computational modelling and docking protocols revealed that compound 8 resembled a comparable binding mode to that of ATX inhibitor GLPG1690. However, PET imaging studies with radioligand [18F]8 showed only relatively low tumour uptake and retention (SUV60min 0.21 ± 0.03) in the tested 8305C human thyroid tumour model reaching a tumour-to-muscle ratio of âˆ¼ 2.2 after 60 min.


Assuntos
Neoplasias , Humanos , Tomografia por Emissão de Pósitrons , Carbolinas , Compostos Radiofarmacêuticos/farmacologia , Radioisótopos de Flúor/química
10.
ACS Bio Med Chem Au ; 3(1): 51-61, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101605

RESUMO

Rapid cell division and reprogramming of energy metabolism are two crucial hallmarks of cancer cells. In humans, hexose trafficking into cancer cells is mainly mediated through a family of glucose transporters (GLUTs), which are facilitative transmembrane hexose transporter proteins. In several breast cancers, fructose can functionally substitute glucose as an alternative energy supply supporting rapid proliferation. GLUT5, the principal fructose transporter, is overexpressed in human breast cancer cells, providing valuable targets for breast cancer detection as well as selective targeting of anticancer drugs using structurally modified fructose mimics. Herein, a novel fluorescence assay was designed aiming to screen a series of C-3 modified 2,5-anhydromannitol (2,5-AM) compounds as d-fructose analogues to explore GLUT5 binding site requirements. The synthesized probes were evaluated for their ability to inhibit the uptake of the fluorescently labeled d-fructose derivative 6-NBDF into EMT6 murine breast cancer cells. A few of the compounds screened demonstrated highly potent single-digit micromolar inhibition of 6-NBDF cellular uptake, which was substantially more potent than the natural substrate d-fructose, at a level of 100-fold or more. The results of this assay are consistent with those obtained from a previous study conducted for some selected compounds against 18F-labeled d-fructose-based probe 6-[18F]FDF, indicating the reproducibility of the current non-radiolabeled assay. These highly potent compounds assessed against 6-NBDF open avenues for the development of more potent probes targeting GLUT5-expressing cancerous cells.

11.
Microscopy (Oxf) ; 72(4): 299-309, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040437

RESUMO

Transmission electron microscopy (TEM) has been essential in defining the structural organization of the cell due to its ability to image cell structures at molecular resolution. However, the absence of colour has made it very difficult to compare the distributions and relationships of two or more types of biomolecules simultaneously if they lack clear morphological distinctions. Furthermore, single-channel information limits functional analysis, particularly in the nucleoplasm, where fibrillar material could be chromatin, ribonucleic acid or protein. Where specific stains exist to discriminate among these molecules, they cannot be combined because conventional TEM is a single-channel technology. A potential path around this barrier is through electron spectroscopic imaging (ESI). ESI can map the distributions of chemical elements within an ultrathin section. Here, we present methods to stain specific molecules with elements that ESI can visualize to enable multichannel electron microscopy.


Assuntos
Núcleo Celular , Cromatina , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Coloração e Rotulagem
12.
Nucl Med Biol ; 116-117: 108314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36708660

RESUMO

INTRODUCTION: 203Pb (t1/2 = 51.9 h, 279 keV (81 %)) is a diagnostic SPECT imaging radionuclide ideally suited for theranostic applications in combination with 212Pb for targeted alpha particle therapy. Our objectives were to develop a high-yield solid target 203Pb cyclotron production route using isotopically enriched 205Tl target material and the 205Tl(p,3n)203Pb reaction as an alternative to lower energy production via the 203Tl(p,n)203Pb reaction. METHODS: 250 mg 205Tl metal (99.9 % isotopic enrichment) was pressed using a hardened stainless steel die. Aluminum target discs were machined with a central depression and annulus groove. The flattened 205Tl pellet was placed into the central depression of the Al disc and a circle of indium wire was laid in the machined annulus surrounding the pellet. An aluminum foil cover was then pressed onto the target disc to create an airtight bond. Targets were irradiated at 23.3 MeV for up to 516 min on a TR-24 cyclotron at currents up to 60 µA to produce 203Pb via the 205Tl(p,3n)203Pb nuclear reaction. Following a cool-down period of >12 h, the target was removed and 205Tl dissolved in 4 M HNO3. A NEPTIS Mosaic-LC synthesis unit performed automated separation using Eichrom Pb resin, and 203Pb was eluted using 8 M HCl or 1 M NH4OAc. 205Tl was diverted to a vial for recovery in an electrolytic cell. 203Pb product radionuclidic purity was assessed by HPGe gamma spectroscopy, while elemental purity was assessed by ICP-OES. Radiolabeling and stability studies were performed with PSC, TCMC, and DOTA chelators, and 203Pb incorporation was verified by radio-TLC analysis. RESULTS: Cyclotron irradiations performed at 60 µA proton beam current and 23.3 MeV (205Tl incident energy) had a 203Pb saturated yield of 4658 ± 62 MBq/µA (n = 3). Automated NEPTIS separation took <4 h from the start of target dissolution to product elution, yielding >85 % decay-corrected [203Pb]PbCl2 with a radionuclidic purity of >99.9 %. Purified [203Pb]PbCl2 yields of up to 12 GBq 203Pb were attained (15.8 GBq at EOB). The [203Pb]PbCl2 and [203Pb]Pb(OAc)2 products contained no detectable radionuclidic impurities besides 201Pb (<0.1 %), and <0.4 ppm stable Pb. 205Tl metal was recovered with a 92 % batch yield. Aliquots of 100 µL [203Pb]Pb(OAc)2 were used for radiolabeling PSC-Bn-NCS, TCMC-NCS, and DOTA-NCS chelators at pH 4.5 and 22 °C for 30 min, with maximum respective molar activities of 461 ± 30 GBq/µmol, 195 ± 37 GBq/µmol, and 83 ± 12 GBq/µmol. PSC, TCMC, and DOTA chelators exhibited >99.9 % incorporation after a 120-hour incubation in human serum at 37 °C. CONCLUSIONS: Nuclear medicine centers with access to higher energy cyclotrons can produce large 203Pb activities sufficient for clinical applications, with a convenient separation technique producing highly pure [203Pb]PbCl2 or [203Pb]Pb(OAc)2 for direct radiolabeling. This represents an attractive route to produce 203Pb for diagnostic SPECT imaging alongside 212Pb targeted alpha particle therapy. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our high-yield 203Pb production technique significantly enhances 203Pb production capabilities to meet the growing preclinical and clinical demand for 203Pb radiopharmaceuticals alongside 212Pb target alpha particle therapy.


Assuntos
Ciclotrons , Chumbo , Humanos , Alumínio , Radioquímica/métodos , Radioisótopos/química , Compostos Radiofarmacêuticos , Quelantes
13.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500626

RESUMO

Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60-120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral-contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.


Assuntos
Frutose , Roedores , Animais , Feminino , Masculino , Ratos , Frutose/metabolismo , Roedores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
14.
EJNMMI Radiopharm Chem ; 7(1): 27, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271969

RESUMO

BACKGROUND: The radiometal gallium-68 (68Ga) is increasingly used in diagnostic positron emission tomography (PET), with 68Ga-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional 99mTc agents. In precision medicine, PET applications of 68Ga are widespread, with 68Ga radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin. MAIN BODY: These 68Ga radiopharmaceuticals include agents such as [68Ga]Ga-macroaggregated albumin for myocardial perfusion evaluation, [68Ga]Ga-PLED for assessing renal function, [68Ga]Ga-t-butyl-HBED for assessing liver function, and [68Ga]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (68Ge) generators and cyclotron production routes strongly positions 68Ga for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the 68Ga radiopharmaceutical community, and recommendations for centers interested in establishing 68Ga radiopharmaceutical production. CONCLUSION: This review outlines important aspects of 68Ga radiopharmacy, including 68Ga production routes using a 68Ge/68Ga generator or medical cyclotron, standardized 68Ga radiolabeling methods, quality control procedures for clinical 68Ga radiopharmaceuticals, and suggested best practices for centers with established or upcoming 68Ga radiopharmaceutical production. Finally, an outlook on 68Ga radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community.

15.
Front Neurol ; 13: 890425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061999

RESUMO

Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.

16.
J Neurosci ; 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35940876

RESUMO

OBJECTIVES: Multiple sclerosis (MS) is a progressive and inflammatory demyelinating disease of the central nervous system (CNS). Peroxisomes perform critical functions that contribute to CNS homeostasis. We investigated peroxisome injury and mitigating effects of peroxisome-restorative therapy on inflammatory demyelination in models of MS. METHODS: Human autopsied CNS tissues (male and female), human cell cultures and cuprizone-mediated demyelination mice (female) were examined by RT-PCR, western blotting and immunolabeling. The therapeutic peroxisome proliferator, 4-phenylbutyrate (4-PBA) was investigated in vitro and in vivo. RESULTS: White matter from MS patients showed reduced peroxisomal transcript and protein levels, including PMP70, compared to non-MS controls. Cultured human neural cells revealed that human microglia contained abundant peroxisomal proteins. TNF-α-exposed microglia displayed reduced immunolabeling of peroxisomal proteins, PMP70 and PEX11ß, which was prevented with 4-PBA. In human myeloid cells exposed to TNF-α or nigericin, suppression of PEX11ß and catalase protein levels were observed to be dependent on NLRP3 expression. Hindbrains from cuprizone-exposed mice showed reduced Abcd1, Cat, and Pex5l transcript levels, with concurrent increased Nlrp3 and Il1b transcript levels, which was abrogated by 4-PBA. In the central corpus callosum, Iba-1 in CNS-associated macrophages (CAMs) and peroxisomal thiolase immunostaining after cuprizone exposure was increased by 4-PBA. 4-PBA prevented decreased myelin basic protein and neurofilament heavy chain immunoreactivity caused by cuprizone exposure. Cuprizone-induced neurobehavioral deficits were improved by 4-PBA treatment. CONCLUSIONS: Peroxisome injury in CAMs, contributed to neuroinflammation and demyelination that was prevented by 4-PBA treatment. A peroxisome-targeted therapy might be valuable for treating inflammatory demyelination and neurodegeneration in MS.Significance statement:Multiple sclerosis (MS) is a common and disabling disorder of the CNS with no curative therapies for its progressive form. The present studies implicate peroxisome impairment in CNS-associated macrophages (CAMs), which include resident microglia and blood-derived macrophages, as an important contributor to inflammatory demyelination and neuroaxonal injury in MS. We also show that the inflammasome molecule NLRP3 is associated with peroxisome injury in vitro and in vivo, especially in CAMs. Treatment with the peroxisome proliferator 4-phenylbutyrate exerted protective effects with improved molecular, morphological and neurobehavioral outcomes that were associated with a neuroprotective CAM phenotype. These findings offer novel insights into the contribution of peroxisome injury in MS together with preclinical testing of a rational therapy for MS.

17.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744851

RESUMO

Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012-2021).


Assuntos
Radioisótopos de Flúor , Neoplasias , Ciclo-Oxigenase 2/metabolismo , Radioisótopos de Flúor/química , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química
18.
EJNMMI Radiopharm Chem ; 7(1): 13, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697954

RESUMO

BACKGROUND: Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. RESULTS: We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP = - 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. CONCLUSIONS: Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.

19.
Pharmaceutics ; 14(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456662

RESUMO

Deregulation and changes in energy metabolism are emergent and important biomarkers of cancer cells. The uptake of hexoses in cancer cells is mediated by a family of facilitative hexose membrane-transporter proteins known as Glucose Transporters (GLUTs). In the clinic, numerous breast cancers do not show elevated glucose metabolism (which is mediated mainly through the GLUT1 transporter) and may use fructose as an alternative energy source. The principal fructose transporter in most cancer cells is GLUT5, and its mRNA was shown to be elevated in human breast cancer. This offers an alternative strategy for early detection using fructose analogs. In order to selectively scout GLUT5 binding-pocket requirements, we designed, synthesized and screened a new class of fructose mimics based upon the 2,5-anhydromannitol scaffold. Several of these compounds display low millimolar IC50 values against the known high-affinity 18F-labeled fructose-based probe 6-deoxy-6-fluoro-D-fructose (6-FDF) in murine EMT6 breast cancer cells. In addition, this work used molecular docking and molecular dynamics simulations (MD) with previously reported GLUT5 structures to gain better insight into hexose-GLUT interactions with selected ligands governing their preference for GLUT5 compared to other GLUTs. The improved inhibition of these compounds, and the refined model for their binding, set the stage for the development of high-affinity molecular imaging probes targeting cancers that express the GLUT5 biomarker.

20.
Nucl Med Biol ; 110-111: 59-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35487834

RESUMO

Lanthanum radiometals are well positioned to serve as theranostic PET radiometals for targeted radionuclide therapy. The positron emitters 132La and 133La show promise to serve as unique PET imaging agents for 225Ac targeted alpha-particle therapy, the 134Ce/134La pair has PET imaging potential with both 225Ac and 227Th, and 135La has potential in targeted Auger-Meitner electron therapy. With easily accessible cyclotron production routes, effective and efficient chemical separations, and robust chelation chemistry, these radionuclides are well poised for additional preclinical and clinical PET and targeted radionuclide therapy studies. This review summarizes recent advances in radiolanthanum production and preclinical applications that demonstrate the strong potential of these radionuclides in PET and targeted radionuclide therapy.


Assuntos
Medicina de Precisão , Radioisótopos , Partículas alfa/uso terapêutico , Ciclotrons , Tomografia por Emissão de Pósitrons , Radioisótopos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...