Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26619, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434314

RESUMO

Background: High mobility group box 1 (HMGB1) and interleukin-18 (IL-18) are involved in various non-coronavirus disease pathogenesis and are reported as potential biomarkers for coronavirus disease (COVID-19). However, their association with COVID-19 pathogenesis has not yet been explored. Aim: This study aimed to investigate the association between HMGB1 and IL-18 concentrations in the sera of COVID-19 patients versus non-COVID-19 patients. Material and methods: We used stored serum samples obtained from 30 COVID-19 patients and 30 non-COVID-19 patients. We collected data on age, gender, treatment status, principal diagnosis, and comorbidity from patient medical records. HMGB1 and IL-18 concentrations were analyzed in the serum by enzyme-linked immunosorbent assay (ELISA). The swab samples' RT-PCR cycle threshold (CT) values were obtained from the laboratory database. Results: HMGB1 concentrations were increased in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 151.33 (90.27-192.38) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0316; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 152.66 (104.04-288.51) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0199). IL-18 concentrations were also higher in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 620.00 (461.50-849.6) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0376; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 835.70 (558.30-1602.00) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0026). Moreover, HMGB1 was associated with IL-18 concentrations in the sera of COVID-19 inpatients (p = 0.0337; r = 0.5500). Conclusion: The association of HMGB1 and IL-18 in COVID-19 might indicate the potential for a dangerous cycle leading to a cytokine storm to occur.

2.
Microb Biotechnol ; 16(7): 1456-1474, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178319

RESUMO

Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.


Assuntos
Antibacterianos , Desenvolvimento de Medicamentos , Farmacorresistência Bacteriana Múltipla , Infecções Estafilocócicas , Staphylococcus aureus , Peptídeos Catiônicos Antimicrobianos , Produtos Biológicos/uso terapêutico , Antibacterianos/uso terapêutico , Adjuvantes Farmacêuticos/uso terapêutico , Sinergismo Farmacológico , Imunoconjugados/uso terapêutico , Terapia por Fagos , Desenvolvimento de Medicamentos/tendências , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Humanos
3.
Immunology ; 169(2): 117-131, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36571562

RESUMO

Hyperinflammation characterized by elevated proinflammatory cytokines known as 'cytokine storms' is the major cause of high severity and mortality seen in COVID-19 patients. The pathology behind the cytokine storms is currently unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were reported by many studies, which positively correlated with the level of proinflammatory cytokines. Dead cells following SARS-CoV-2 infection might release a large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space. HMGB1 is a well-known inflammatory mediator. Additionally, extracellular HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to bind with a wide variety of molecules including nucleic acids and could trigger massive proinflammatory immune responses. This review aimed to critically explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA complexes mediate proinflammatory responses in COVID-19. The contribution of these pathways to impair host immune responses against SARS-CoV-2 infection leading to a cytokine storm was also evaluated. Moreover, since blocking the HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA complexes might trigger endocytosis via RAGE which is linked to lysosomal rupture, PRRs activation, and pyroptotic death. High levels of the proinflammatory cytokines produced might suppress many immune cells leading to uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these mechanisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1 antagonists could be considered to give benefit in alleviating cytokine storms and serve as a potential candidate for COVID-19 therapy.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , Proteína HMGB1 , Terapia de Alvo Molecular , RNA Viral , SARS-CoV-2 , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , COVID-19/complicações , COVID-19/imunologia , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/metabolismo , RNA Viral/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Biochem Res Int ; 2021: 6685921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628506

RESUMO

BACKGROUND: At the present time, COVID-19 vaccines are at the testing stage, and an effective treatment for COVID-19 incorporating appropriate safety measures remains the most significant obstacle to be overcome. A strategic countermeasure is, therefore, urgently required. AIM: This study aims to evaluate the efficacy and safety of a combination of lopinavir/ritonavir-azithromycin, lopinavir/ritonavir-doxycycline, and azithromycin-hydroxychloroquine used to treat patients with mild to moderate COVID-19 infections. Setting and Design. This study was conducted at four different clinical study sites in Indonesia. The subjects gave informed consent for their participation and were confirmed as being COVID-19-positive by means of an RT-PCR test. The present study constituted a randomized, double-blind, and multicenter clinical study of patients diagnosed with mild to moderate COVID-19 infection. MATERIALS AND METHODS: Six treatment groups participated in this study: a Control group administered with a 500 mg dose of azithromycin; Group A which received a 200/50 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; Group B treated with a 200/50 mg dose of lopinavir/ritonavir and 200 mg of doxycycline; Group C administered with 200 mg of hydroxychloroquine and 500 mg of azithromycin; Group D which received a 400/100 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; and Group E treated with a 400/100 mg dose of lopinavir/ritonavir and 200 mg of doxycycline. RESULTS: 754 subjects participated in this study: 694 patients (92.4%) who presented mild symptoms and 57 patients (7.6%) classified as suffering from a moderate case of COVID-19. On the third day after treatment, 91.7%-99.2% of the subjects in Groups A-E were confirmed negative by a PCR swab test compared to 26.9% in the Control group. Observation of all groups which experienced a significant decrease in virus load between day 1 and day 7 was undertaken. Other markers, such as CRP and IL-6, were significantly lower in all treatment groups (p < 0.05 and p < 0.0001) than in the Control group. Furthermore, IL-10 and TNF-α levels were significantly elevated in all treatment groups (p < 0.0001). The administration of azithromycin to the Control group increased CRP and IL-6 levels, while reduced IL-10 and TNF-α on day 7 (p < 0.0001) compared with day 1. Decreases in ALT and AST levels were observed in all groups (p < 0.0001). There was an increase in creatinine in the serum level of the Control, C, D, and E groups (p < 0.05), whereas the BUN level was elevated in all groups (p < 0.0001). CONCLUSIONS: The study findings suggest that the administration of lopinavir/ritonavir-doxycycline, lopinavir/ritonavir-azithromycin, and azithromycin-hydroxychloroquine as a dual drug combination produced a significantly rapid PCR conversion rate to negative in three-day treatment of mild to moderate COVID-19 cases. Further studies should involve observation of older patients with severe clinical symptoms in order to collate significant amounts of demographic data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...