Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 153(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34436511

RESUMO

The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid-based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Epiteliais de Sódio , Íons , Potássio/metabolismo , Sódio/metabolismo
2.
Cell Rep ; 22(6): 1615-1626, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29425514

RESUMO

Fluorescent labels offer the capability to follow conformational dynamics of membrane proteins, but signal detection in such recordings is inherently difficult to achieve in a cell membrane and lacks sufficient time resolution to follow physiologically relevant transitions. Here, we develop high-sensitivity patch-clamp fluorometry (hsPCF), a fluorescence-based approach that results in up to 10-fold increased signals and affords 50-fold faster fluorescence recordings than previous methods. The increased time resolution is paired with a very high versatility in terms of the choice of fluorescent dye, cell type, and protein of interest. We highlight this versatility by providing insight into the conformational dynamics of both ligand- and voltage-gated ion channels using fluorescent labels introduced in extracellular or transmembrane positions while changing either the extra- or intracellular solutions. Together, hsPCF will thus enable the future study of membrane-embedded proteins with sufficient temporal resolution to resolve conformational dynamics.


Assuntos
Fluorometria/métodos , Canais Iônicos/química , Técnicas de Patch-Clamp/métodos , Animais , Humanos , Ativação do Canal Iônico/fisiologia , Conformação Proteica
3.
Elife ; 62017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498103

RESUMO

Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verification is lacking due to the sensitivity of this structure to conventional manipulations. Here, we explored the basis for ion selectivity by incorporating unnatural amino acids into the channel, engineering channel stoichiometry and performing free energy simulations. We observed no preference for sodium at the "GAS belt" in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Substituição de Aminoácidos , Análise Mutacional de DNA , Modelos Moleculares , Especificidade por Substrato
4.
ACS Photonics ; 3(8): 1446-1452, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27563688

RESUMO

We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

5.
Nat Commun ; 7: 11332, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27079683

RESUMO

Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

6.
Open Biochem J ; 9: 49-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464591

RESUMO

Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance.

7.
PLoS One ; 9(5): e96371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24797388

RESUMO

The complement system is an essential part of the innate immune system by acting as a first line of defense which is stabilized by properdin, the sole known positive regulator of the alternative complement pathway. Dysregulation of complement can promote a diversity of human inflammatory diseases which are treated by complement inhibitors. Here, we generated a novel blocking monoclonal antibody (mAb) against properdin and devised a new diagnostic assay for this important complement regulator. Mouse mAb 1340 specifically detected native properdin from human samples with high avidity. MAb 1340 inhibited specifically the alternative complement mediated cell lysis within a concentration range of 1-10 µg/mL. Thus, in vitro anti-properdin mAb 1340 was up to fifteen times more efficient in blocking the complement system as compared to anti-C5 or anti-Ba antibodies. Computer-assisted modelling suggested a three-dimensional binding epitope in a properdin-C3(H2O)-clusterin complex to be responsible for the inhibition. Recovery of properdin in a newly established sandwich ELISA using mAb 1340 was determined at 80-125% for blood sample dilutions above 1∶50. Reproducibility assays showed a variation below 25% at dilutions less than 1∶1,000. Systemic properdin concentrations of healthy controls and patients with age-related macular degeneration or rheumatic diseases were all in the range of 13-30 µg/mL and did not reveal significant differences. These initial results encourage further investigation into the functional role of properdin in the development, progression and treatment of diseases related to the alternative complement pathway. Thus, mAb 1340 represents a potent properdin inhibitor suitable for further research to understand the exact mechanisms how properdin activates the complement C3-convertase and to determine quantitative levels of properdin in biological samples.


Assuntos
Anticorpos Monoclonais/química , Properdina/imunologia , Animais , Via Alternativa do Complemento , Simulação por Computador , Ensaio de Imunoadsorção Enzimática , Humanos , Imunidade Inata , Camundongos , Modelos Imunológicos , Modelos Moleculares , Properdina/antagonistas & inibidores , Properdina/metabolismo , Reprodutibilidade dos Testes
8.
Nano Lett ; 13(12): 5858-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24206579

RESUMO

We demonstrate nanoscale photonic point-to-point measurements characterizing a single component inside an all-optical signal-processing chip. We perform spectrally resolved near-field scanning optical microscopy on ultrashort pulses propagating inside a slow light photonic crystal waveguide, which is part of a composite sample. A power study reveals a reshaping of the pulse's spectral density, which we model using the nonlinear Schrödinger equation. With the model, we are able to identify the various physical processes governing the nonlinear pulse propagation. Finally, we contrast the near-field measurements with transmission measurements of the complete composite sample to elucidate the importance of gaining local information about the evolution of the spectral density.


Assuntos
Cristalização , Nanotecnologia , Luz , Modelos Teóricos , Dinâmica não Linear , Fótons , Espalhamento de Radiação
10.
Chem Phys Lipids ; 155(1): 31-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18671955

RESUMO

The physico-chemical properties of three fully hydrated monoacyl maltoside glycolipids were investigated with Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The different synthesized maltoside glycoconjugates vary in the length and saturation of the fatty acid moiety, whereas the constant head group region contains a beta-linked maltose with a OC(2)-NH spacer. The compounds with saturated acyl chains showed a complex pattern of temperature-dependent behaviour, regarding the adopted three-dimensional aggregate structure of the molecules and the main phase transition from the gel to liquid crystalline phase of the acyl chains. A substitution of the saturated acyl chain with an unsaturated acyl chain led to a complete change of the structural preferences, from a high ordered stacking of the bilayers to an unilamellar arrangement of completely disordered and fluid membranes. The presence of the NH group in the spacer, compared to the compounds lacking the NH group allows the formation of a hydrogen bonding network, which influences the observed phase properties. The results of these studies of the hydrated monoacylated maltose glycolipids are discussed in relation to the thermotropic phase properties of the pure compounds in the absence of water.


Assuntos
Glicolipídeos/química , Maltose/química , Acetilação , Varredura Diferencial de Calorimetria , Carboidratos/química , Físico-Química/métodos , Ligação de Hidrogênio , Lipídeos/química , Modelos Químicos , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química , Difração de Raios X , Raios X
11.
Chem Phys Lipids ; 149(1-2): 52-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17658504

RESUMO

The structural preferences of 1,2-dioleoyl-sn-glycerol glycolipids with glucose, galactose, maltose, and cellobiose as sugar head group were investigated under near physiological conditions with Fourier-transform infrared spectroscopy (FT-IR) and synchrotron radiation small-angle X-ray scattering (SAXS). Whereas all glycolipids have a very high fluidity at temperatures above 0 degrees C, the mono- and disaccharide compounds differ considerably in their aggregate structures. The monosaccharide compounds adopt only inverted hexagonal (H(II)) structures in the temperature range 5-70 degrees C, while the disaccharide compounds adopt only multilamellar structures. Since these and similar glycolipids are frequently found in nature, these data should be of relevance for the function of their host cell membranes.


Assuntos
Glicolipídeos/química , Dissacarídeos/química , Estrutura Molecular , Monossacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA