Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Phys Med Biol ; 67(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35830817

RESUMO

Objective.Due to the radiosensitizing effect of biocompatible noble metal nanoparticles (NPs), their administration is considered to potentially increase tumor control in radiotherapy. The underlying physical, chemical and biological mechanisms of the NPs' radiosensitivity especially when interacting with proton radiation is not conclusive. In the following work, the energy deposition of protons in matter containing platinum nanoparticles (PtNPs) is experimentally investigated.Approach.Surfactant-free monomodal PtNPs with a mean diameter of (40 ± 10) nm and a concentration of 300 µg ml-1, demonstrably leading to a substantial production of reactive oxygen species (ROS), were homogeneously dispersed into cubic gelatin samples serving as tissue-like phantoms. Gelatin samples without PtNPs were used as control. The samples' dimensions and contrast of the PtNPs were verified in a clinical computed tomography scanner. Fields from a clinical proton machine were used for depth dose and stopping power measurements downstream of both samples types. These experiments were performed with a variety of detectors at a pencil beam scanning beam line as well as a passive beam line with proton energies from about 56-200 MeV.Main results.The samples' water equivalent ratios in terms of proton stopping as well as the mean proton energy deposition downstream of the samples with ROS-producing PtNPs compared to the samples without PtNPs showed no differences within the experimental uncertainties of about 2%.Significance.This study serves as experimental proof that the radiosensitizing effect of biocompatible PtNPs is not due to a macroscopically increased proton energy deposition, but is more likely caused by a catalytic effect of the PtNPs. Thus, these experiments provide a contribution to the highly discussed radiobiological question of the proton therapy efficiency with noble metal NPs and facilitate initial evidence that the dose calculation in treatment planning is straightforward and not affected by the presence of sensitizing PtNPs.


Assuntos
Nanopartículas Metálicas , Terapia com Prótons , Radiossensibilizantes , Gelatina , Nanopartículas Metálicas/uso terapêutico , Platina/farmacologia , Terapia com Prótons/métodos , Prótons , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
2.
Ann Oncol ; 33(5): 500-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306155

RESUMO

BACKGROUND: Identification of residual disease in patients with localized non-small cell lung cancer (NSCLC) following treatment with curative intent holds promise to identify patients at risk of relapse. New methods can detect circulating tumour DNA (ctDNA) in plasma to fractional concentrations as low as a few parts per million, and clinical evidence is required to inform their use. PATIENTS AND METHODS: We analyzed 363 serial plasma samples from 88 patients with early-stage NSCLC (48.9%/28.4%/22.7% at stage I/II/III), predominantly adenocarcinomas (62.5%), treated with curative intent by surgery (n = 61), surgery and adjuvant chemotherapy/radiotherapy (n = 8), or chemoradiotherapy (n = 19). Tumour exome sequencing identified somatic mutations and plasma was analyzed using patient-specific RaDaR™ assays with up to 48 amplicons targeting tumour-specific variants unique to each patient. RESULTS: ctDNA was detected before treatment in 24%, 77% and 87% of patients with stage I, II and III disease, respectively, and in 26% of all longitudinal samples. The median tumour fraction detected was 0.042%, with 63% of samples <0.1% and 36% of samples <0.01%. ctDNA detection had clinical specificity >98.5% and preceded clinical detection of recurrence of the primary tumour by a median of 212.5 days. ctDNA was detected after treatment in 18/28 (64.3%) of patients who had clinical recurrence of their primary tumour. Detection within the landmark timepoint 2 weeks to 4 months after treatment end occurred in 17% of patients, and was associated with shorter recurrence-free survival [hazard ratio (HR): 14.8, P <0.00001] and overall survival (HR: 5.48, P <0.0003). ctDNA was detected 1-3 days after surgery in 25% of patients yet was not associated with disease recurrence. Detection before treatment was associated with shorter overall survival and recurrence-free survival (HR: 2.97 and 3.14, P values 0.01 and 0.003, respectively). CONCLUSIONS: ctDNA detection after initial treatment of patients with early-stage NSCLC using sensitive patient-specific assays has potential to identify patients who may benefit from further therapeutic intervention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , DNA Tumoral Circulante/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos
3.
Phys Med Biol ; 66(21)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34534971

RESUMO

Objective. The aim of the phantom study was to validate and to improve the computed tomography (CT) images used for the dose computation in proton therapy. It was tested, if the joint reconstruction of activity and attenuation images of time-of-flight PET (ToF-PET) scans could improve the estimation of the proton stopping-power.Approach. The attenuation images, i.e. CT images with 511 keV gamma-rays (γCTs), were jointly reconstructed with activity maps from ToF-PET scans. Theß+activity was produced with FDG and in a separate experiment with proton-induced radioactivation. The phantoms contained slabs of tissue substitutes. The use of theγCTs for the prediction of the beam stopping in proton therapy was based on a linear relationship between theγ-ray attenuation, the electron density, and the stopping-power of fast protons.Main results. The FDG based experiment showed sufficient linearity to detect a bias of bony tissue in the heuristic look-up table, which maps between x-ray CT images and proton stopping-power.γCTs can be used for dose computation, if the electron density of one type of tissue is provided as a scaling factor. A possible limitation is imposed by the spatial resolution, which is inferior by a factor of 2.5 compared to the one of the x-ray CT.γCTs can also be derived from off-line, ToF-PET scans subsequent to the application of a proton field with a hypofractionated dose level.Significance. γCTs are a viable tool to support the estimation of proton stopping with radiotracer-based ToF-PET data from diagnosis or staging. This could be of higher potential relevance in MRI-guided proton therapy.γCTs could form an alternative approach to make use of in-beam or off-line PET scans of proton-inducedß+activity with possible clinical limitations due to the low number of coincidence counts.


Assuntos
Terapia com Prótons , Algoritmos , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Prótons
4.
Sci Rep ; 11(1): 19029, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561486

RESUMO

The SARS-CoV-2 pandemic has highlighted the weaknesses of relying on single-use mask and respirator personal protective equipment (PPE) and the global supply chain that supports this market. There have been no major innovations in filter technology for PPE in the past two decades. Non-woven textiles used for filtering PPE are single-use products in the healthcare environment; use and protection is focused on preventing infection from airborne or aerosolized pathogens such as Influenza A virus or SARS-CoV-2. Recently, C-H bond activation under mild and controllable conditions was reported for crosslinking commodity aliphatic polymers such as polyethylene and polypropylene. Significantly, these are the same types of polymers used in PPE filtration systems. In this report, we take advantage of this C-H insertion method to covalently attach a photosensitizing zinc-porphyrin to the surface of a melt-blow non-woven textile filter material. With the photosensitizer covalently attached to the surface of the textile, illumination with visible light was expected to produce oxidizing 1O2/ROS at the surface of the material that would result in pathogen inactivation. The filter was tested for its ability to inactivate Influenza A virus, an enveloped RNA virus similar to SARS-CoV-2, over a period of four hours with illumination of high intensity visible light. The photosensitizer-functionalized polypropylene filter inactivated our model virus by 99.99% in comparison to a control.


Assuntos
COVID-19/virologia , Diazometano/química , Luz , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polipropilenos/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/efeitos da radiação
5.
Med Phys ; 48(2): 831-840, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33368345

RESUMO

OBJECTIVE: Side effects of radiation therapy may include skin damage. The surface dose is of great interest and contains the buildup effect. In particular, the proton therapy community requires further experimental data to quantify doses in the surface region. This specification includes the skin dose, which is defined according to ICRU Report No. 39 at 70 µm water equivalent depth. The aim of this study is to gather more knowledge of the skin dose by varying key parameters defined by the patient treatment plan. This consists of clinical aspects such as the influence of the air gap, the application of a range shifter (RS), or the proton delivery technique. MATERIAL/METHODS: Skin doses were determined with a PTW 23391 extrapolation chamber with three thin Kapton® entrance windows operated as a conventional ionization chamber. The impact on the skin dose for quasi-monoenergetic pencil beam scanning (PBS) proton beams was evaluated for clinical air gaps between 3.5 and 51.1 cm. The differences in skin dose were assessed by irradiating equivalent fields with an RS of 51 mm water equivalent thickness (RS51) and without. Furthermore, the delivery techniques PBS, uniform scanning (US), and double scattering (DS) were compared by defining a spread-out Bragg peak (SOBP). TOPAS (V.3.1.2) was used to model an IBA nozzle with PBS and to score dose to water at the surface of a water phantom. RESULTS: For the monoenergetic fields without the application of the RS the skin dose was constant down to an air gap of 6.2 cm. A lower air gap of 3.5 cm showed a variation in skin dose by up to 2.4% compared to the results obtained with larger air gaps. With the inserted RS51 an increase in the skin dose was found for air gaps smaller than 11.3 cm. Experimentally, a dose difference of 1.4% was recorded for an air gap of 6.2 cm by inserting an RS and none. With the Monte Carlo calculations the largest dose increase was observed at the air gap of 3.5 cm with 1.7% and 4.0% relative to the skin dose results without the RS and to the largest evaluated air gap of 51.1 cm, respectively. The SOBP comparison of the beam modalities at the measuring plane at the isocenter revealed higher skin doses without RS (including RS) by up to +1.9% (+1.5%) for DS and +1.3% (+1.1%) for US compared to PBS. For all three techniques an approx. 2% rise in skin dose was observed for the largest evaluated air gap of 37.7 cm to an air gap of 6.2 cm when using an RS51. CONCLUSION: The study investigated aspects of skin dose of a water equivalent phantom by varying key parameters of a proton treatment plan. Parameters like the RS, the air gap, and the delivery modality have an impact on the order of 4.0% for the skin dose at the depth of 70 µm. The increases in skin dose are the effects of the contribution of the increased electron fluence at small air gaps and the emitted hadronic particles produced by the RS.


Assuntos
Terapia com Prótons , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Med Phys ; 47(5): 2277-2288, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32037577

RESUMO

PURPOSE/OBJECTIVE: Quantification of surface dose within the first few hundred water equivalent µm is challenging. Nevertheless, it is of large interest for the proton therapy community to study dose effects in the skin. The experimental determination is affected by the detector properties, such as the detector volume and material. The International Commission on Radiation Units and Measurements in its report 39 recommends assessing the skin dose at a depth of 0.07 mm. The aim of this study is the estimation of the absorbed dose at and around a depth of 70 µm. We used various dosimetric approaches in conjunction with proton pencil beam scanning delivery to determine the skin dose in a clinical setting. MATERIAL/METHODS: Five different detectors were tested for determining the surface dose in water: EBT3 and HD-V2 GAFCHROMIC™ radiochromic film, LiF:Mg,Ti thermoluminescent dosimeter, IBA PPC05 plane-parallel ionization chamber, and PTW 23391 extrapolation chamber. The irradiation setup consisted of quasi-monoenergetic scanned proton pencil beams with kinetic energies of 100, 150, and 226.7 MeV, respectively. Radiochromic films were placed within a vertical stack and in wedge geometry and were analyzed with FilmQA Pro™ adopting triple channel dosimetry. The extrapolation chamber PTW 23391, which served as a reference in the current work, was used in a conventional ionization chamber setup with a fixed electrode gap of 2 mm. Three Kapton® entrance windows with thicknesses of 25, 50, and 75 µm were employed. Thermoluminescent dosimeters were provided as powder and were pressed onto a sheet of aluminum. Furthermore, the Monte Carlo code TOol for PArticle Simulation (TOPAS) in version 3.1.p2 was used to model an IBA pencil beam scanning nozzle and score dose to water in a water phantom. RESULTS: The resulting depth dose curves were normalized to their 100% dose at the reference depth of 3 cm. We obtained the skin doses with the extrapolation chamber and with TOPAS. For the experimental approach this resulted in 79.7 ± 0.3%, 86.0 ± 0.6%, and 87.1 ± 0.1% for the proton energies 100, 150, and 226.7 MeV, respectively. The results for TOPAS were 80.1 ± 0.2% (100 MeV), 87.1 ± 0.5% (150 MeV), and 86.9 ± 0.4% (226.7 MeV), respectively. Based on the experimental results of the skin dose, we provided a clinically relevant surface extrapolation factor for the common measurement methods. This allows the result of the first measurement depth of a detector to be scaled to the dose at the skin depth. Most practical would be the use of the surface extrapolation factor for the PPC05 chamber, due to its direct reading, the wide availability in clinics and the low uncertainties. The calculated factors were 0.986 ± 0.004 for 100 MeV, 0.961 ± 0.008 for 150 MeV, and 0.963 ± 0.003 for 226.7 MeV. CONCLUSIONS: In this study, dissimilar experimental approaches were evaluated with respect to measurements at depths close to the surface. The experimental depth dose curves are in good agreement with the simulation with TOPAS Monte Carlo. To the author's knowledge this was the first experimental determination of the skin dose according to the International Commission on Radiation Units and Measurements 39 definition in proton pencil beam scanning.


Assuntos
Terapia com Prótons/métodos , Doses de Radiação , Dosimetria Fotográfica , Dosagem Radioterapêutica
7.
Phys Med Biol ; 64(15): 155003, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216523

RESUMO

Some clinical indications require small fields with sharp lateral dose gradients, which is technically challenging in proton beam therapy. This holds especially true for low-range fields applied with the spot scanning technique, where large beam profiles entering from the beam-line or the insertion of range shifting blocks lead to large lateral gradients. We regard the latter case and solve it by shifting the range shifting block far upstream in conjunction with a collimating aperture close to the patient. The experiments of the current work are based on a commercial proton therapy treatment head designed for several delivery modes. In a research environment of the spot-scanning delivery mode a range shifter is inserted downstream of the scanning magnets in a slot which is usually employed only in a scattering delivery mode. This configuration is motivated by equations assuming a simple model of proton transport. In the experiments lateral dose planes are acquired with a scintillation screen and radiochromic films. Dose distributions are calculated with the Monte Carlo dose engine of the RayStation treatment planning system. We demonstrate that proton fields with 80%-20% lateral dose fall-off values between 1.4 mm and 4.0 mm can be achieved for water equivalent depths between 0 cm and 10 cm. The simulated lateral dose profiles agree with the experimental dose profiles. The sharpening of the field edges is set off by a broadening of the proton spots towards the center of the fields. This limits the clinical application mainly to small fields for which the distal and proximal conformality is of minor importance.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas Estereotáxicas , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
8.
Phys Med Biol ; 63(8): 085020, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29553047

RESUMO

To assess if apertures shall be mounted upstream or downstream of a range shifting block if these field-shaping devices are combined with the pencil-beam scanning delivery technique (PBS). The lateral dose fall-off served as a benchmark parameter. Both options realizing PBS-with-apertures were compared to the uniform scanning mode. We also evaluated the difference regarding the out-of-field dose caused by interactions of protons in beam-shaping devices. The potential benefit of the downstream configuration over the upstream configuration was estimated analytically. Guided by this theoretical evaluation a mechanical adapter was developed which transforms the upstream configuration provided by the proton machine vendor to a downstream configuration. Transversal dose profiles were calculated with the Monte-Carlo based dose engine of the commercial treatment planning system RayStation 6. Two-dimensional dose planes were measured with an ionization chamber array and a scintillation detector at different depths and compared to the calculation. Additionally, a clinical example for the irradiation of the orbit was compared for both PBS options and a uniform scanning treatment plan. Assuming the same air gap the lateral dose fall-off at the field edge at a few centimeter depth is 20% smaller for the aperture-downstream configuration than for the upstream one. For both options of PBS-with-apertures the dose fall-off is larger than in uniform scanning delivery mode if the minimum accelerator energy is 100 MeV. The RayStation treatment planning system calculated the width of the lateral dose fall-off with an accuracy of typically 0.1 mm-0.3 mm. Although experiments and calculations indicate a ranking of the three delivery options regarding lateral dose fall-off, there seems to be a limited impact on a multi-field treatment plan.


Assuntos
Terapia com Prótons/métodos , Humanos , Método de Monte Carlo , Terapia com Prótons/instrumentação , Cintilografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Phys Med Biol ; 60(19): 7637-53, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26389610

RESUMO

There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as the energy of the radiation source and the underlying photon cross sections as well as the I-value of media involved in the simulation. The combined standard uncertainty of the Monte Carlo calculation yields 0.78% as a conservative estimation. The result of the calculation is close to the experimental result and with each combined standard uncertainty <1%, the accuracy of EGSnrc is confirmed. The setup and methodology of this study can be employed to benchmark other Monte Carlo codes for the calculation of absorbed dose in radiotherapy.


Assuntos
Benchmarking , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Radiometria/métodos , Incerteza , Elétrons , Humanos
11.
Phys Med Biol ; 57(7): 1831-54, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22411097

RESUMO

Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.


Assuntos
Elétrons , Radiometria/instrumentação , Radioisótopos de Cobalto , Humanos , Incerteza
12.
Scott Med J ; 56(3): 135-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21873717

RESUMO

In most countries in the Western world, more than 50% of adults are overweight or obese putting them at increased risk of hypertension, type 2 diabetes, coronary heart disease, stroke and other chronic disorders. It is not clear what impact increasing prevalence of over-weight and obesity has on hospital admissions. The objective of this study was to examine the relationship between body mass index (BMI) and number of days spent in hospital. The study was designed as a retrospective and prospective cohort study using nationally representative Health Survey data linked to NHS hospital admissions data. The study was set in Scotland. The participants were a nationally representative sample of 6968 (45%) men and 8700 (55%) women, of 16-74 years of age, living in private households whose BMI was recorded in the 1995 and 1998 Scottish Health Surveys. The outcome measure was the number of days spent in hospital between 1981 and 2004. The results showed that the proportion of participants in both normal weight (BMI 20-24.9 kg/m(2)) and over-weight (BMI 25-29.9 kg/m(2)) categories was 37%, with 21% in the obese (BMI ≥30 kg/m(2)) and 5% in the under-weight (BMI <20 kg/m(2)) categories. The median number of days spent in hospital between 1981 and 2004 was six. The odds ratios (95% confidence intervals) for spending above the median numbers of days in hospital adjusted for age, sex, socioeconomic status and behavioural factors (i.e. smoking, alcohol drinking and physical activity) were 1.29 (1.06-1.56) for the <20 kg/m(2) group, 1.00 (0.91-1.11) for the 25-29.9 kg/m(2) group and 1.24 (1.10-1.38) for the ≥30 kg/m(2) group compared with the 20-24.9 kg/m(2) group. In conclusion, extremes of BMI category identified at a single point in time are associated with spending above the median number of days in hospital over a 20-year period after adjusting for demographic, behavioural and socioeconomic exposures.


Assuntos
Tempo de Internação/estatística & dados numéricos , Sobrepeso/epidemiologia , Adolescente , Adulto , Idoso , Análise de Variância , Índice de Massa Corporal , Estudos de Coortes , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/classificação , Fatores de Risco , Escócia/epidemiologia , Medicina Estatal , Adulto Jovem
13.
Med Phys ; 38(2): 1045-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452742

RESUMO

PURPOSE: In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p(wall) and P(cav)) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount deltaz. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift deltaz for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. METHODS: The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps deltaz around the depth of measurement. The optimal shift deltaz is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation correction is calculated as the ratio between doses for the complete chamber and a wall-less air cavity. RESULTS: The high energy part of the fluence spectra within the chamber strongly varies even with small chamber shifts, allowing the determination of deltaz within micrometers. For the NACP-02 chamber a shift deltaz = -0.058 cm results. This value is independent of the energy of the primary electrons as well as of the depth within the phantom and it is in good agreement with the value recommended in the German dosimetry protocol. Applying this shift, the calculated wall perturbation correction as a function of depth is varying less than 1% from zero up to the half value depth R50 for electron energies in the range of 6-21 MeV. The remaining depth dependence can mainly be attributed to the scatter properties of the entrance window. When neglecting the nonwater equivalence of the entrance window, the variation of p(wall) with depth is up to 10% and more, especially for low electron energies. CONCLUSIONS: The variation of the wall perturbation correction for the NACP-02 chamber in clinical electron beams strongly depends on the positioning of the chamber. Applying a shift deltaz = -0.058 cm toward the focus ensures that the primary electron spectrum within the chamber bears the largest resemblance to the fluence of a wall-less cavity. Hence, the influence of the chamber walls on the perturbation correction can be separated out and the residual variation of p(wall) with depth is minimized.


Assuntos
Elétrons/uso terapêutico , Método de Monte Carlo , Radiometria/instrumentação , Artefatos , Humanos
14.
Rofo ; 182(12): 1091-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20972935

RESUMO

PURPOSE: The aim of this study was to investigate the potential dose reduction in the uterus as a result of lead apron protection during thoracic CT scans. Moreover, the distribution of the radiation dose in the uterus was determined in order to obtain information about the ratio of internally and externally scattered radiation. MATERIALS AND METHODS: The uterus doses during thoracic CT were determined by measuring organ doses using an Alderson-RANDO®-Phantom and thermoluminescent dosimeters. A 0.25 mm lead equivalent protective apron was used to shield the abdominal area. Three measurement conditions were evaluated: without lead apron, covered with lead apron and wrapped with lead apron. The uterus dose with and without shielding describes the mean value and standard deviation of all examinations and all measurement points in the organ. RESULTS: The uterus dose by thoracic CT was measured to be approximately 66.5 ± 3.1 µGy. If the abdomen is covered with a 0.25 mm Pb equivalent lead apron in the front area and on both sides, the uterus dose is reduced to 49.4 ± 2.8 µGy (26% reduction, p < 0.001). If a lead apron is wrapped around the abdomen, providing 0.50 mm Pb shielding in the anterior section due to overlap, and 0.25 mm Pb in the posterior section and on both sides, the uterus dose is reduced even more to 43.8 ± 2.5 µGy (34% reduction, p < 0.001). The dose distribution when the lead apron covers the abdomen shows that the shielding is effective for the scatter radiation that comes from the anterior part. Moreover, the wrapped apron protects the uterus from all directions and is even more effective for dose reduction than the covering apron. CONCLUSION: Our findings demonstrate that protective aprons are an effective dose reduction technique without additional costs and little effect on patient examination time.


Assuntos
Tomografia Computadorizada de Feixe Cônico/efeitos adversos , Tomografia Computadorizada de Feixe Cônico/métodos , Proteção Radiológica/métodos , Radiografia Torácica/efeitos adversos , Útero/efeitos da radiação , Tomografia Computadorizada de Feixe Cônico/instrumentação , Feminino , Humanos , Chumbo , Imagens de Fantasmas , Gravidez , Radiografia Torácica/métodos , Espalhamento de Radiação , Dosimetria Termoluminescente
15.
Phys Med Biol ; 55(16): 4481-93, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20668340

RESUMO

Modern Monte Carlo codes allow for the calculation of ion chamber specific beam quality correction factors k(Q), which are needed for dosimetry in radiotherapy. While statistical (type A) uncertainties of the calculated data can be minimized sufficiently, the influence of systematic (type B) uncertainties is mostly unknown. This study presents an investigation of systematic uncertainties of Monte Carlo-based k(Q) values for a NE2571 thimble ion chamber, calculated with the EGSnrc system. Starting with some general investigation on transport parameter settings, the influence of geometry and source variations is studied. Furthermore, a systematic examination of uncertainties due to cross section is introduced by determining the sensitivity of k(Q) results to changes in cross section data. For this purpose, single components of the photon cross sections and the mean excitation energy I in the electron stopping powers are varied. The corresponding sensitivities are subsequently applied with information of standard uncertainties for the cross section data found in the literature. It turns out that the calculation of k(Q) factors with EGSnrc is mostly insensitive to transport settings within the statistical uncertainties of approximately 0.1%. Severe changes in the dimensions of the chamber lead to comparatively small, insignificant changes. Further, the inclusion of realistic beam models, delivering a complete phase space instead of simple photon spectra, does not significantly influence the result. However, the uncertainties in electron cross sections have an impact on the final uncertainty of k(Q) to a comparatively large degree. For the NE2571 chamber investigated in this work, this uncertainty amounts to 0.4% at 24 MV, decreasing to 0.2% at 6 MV.


Assuntos
Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Calibragem , Radioisótopos de Cobalto/análise , Simulação por Computador , Elétrons , Desenho de Equipamento , Humanos , Modelos Estatísticos , Método de Monte Carlo , Aceleradores de Partículas , Fótons , Reprodutibilidade dos Testes
17.
Phys Med Biol ; 54(8): 2421-35, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19336840

RESUMO

Current dosimetry protocols recommend the use of plane-parallel ionization chambers for the dosimetry of clinical electron beams. The necessary perturbation corrections p(wall) and p(cav) are assumed to be unity, independent of the depth of measurement and the energy of the primary electrons. To verify these assumptions detailed Monte Carlo studies of a Roos chamber in clinical electron beams with energies in the range of 6-21 MeV are performed at different depths in water and analyzed in terms of Spencer-Attix cavity theory. Separate simulations for the perturbation corrections p(wall) and p(cav) indicate quite different properties of both correction factors with depth. Dose as well as fluence calculations show a nearly depth-independent wall correction factor for a shift of the Roos chamber Deltaz = -0.017 cm toward the focus. This value is in good agreement with the positioning recommendation given in all dosimetry protocols. Regarding the fluence perturbation p(cav) the simulation of the electron fluence inside the air cavity in comparison to water unambiguously reveals an in-scattering of low energy electrons, despite the fact, that the cavity is 'well guarded'. For depths beyond the reference depth z(ref) this effect is superimposed by an increased loss of primary electrons from the beam resulting in p(cav) > 1. This effect is largest for low electron energies but present for all electron energies involved in this study. Based on the different depth dependences of p(wall) and p(cav) it is possible to choose a chamber shift Deltaz in a way to minimize the depth dependence of the overall perturbation factor p. For the Roos chamber this shift is Deltaz = -0.04 cm independent of electron energy.


Assuntos
Elétrons , Radiometria/instrumentação , Ar , Desenho de Equipamento , Humanos , Método de Monte Carlo , Doses de Radiação
18.
Phys Med Biol ; 53(18): 4893-906, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18711244

RESUMO

This paper presents investigations of thimble ionization chamber response in medium-energy kilovoltage x-ray beams (70-280 kVp, 0.09-3.40 mm Cu HVL). Two thimble ionization chambers (PTW30015 and PTW30016) were investigated, regarding the influence of the central electrode dimensions made of aluminum. Measurements were carried out in photon fields of different beam quality. Corresponding Monte Carlo simulations employing the EGSnrc Monte Carlo code system were performed. The simulations included the modelling of the x-ray tube and measurement setup for generation of x-ray spectra. These spectra were subsequently used to calculate the absorbed energy in the air cavity of the two thimble ionization chamber models and the air kerma at the reference point of the chambers. Measurements and simulations revealed an optimal diameter of the central electrode, concerning an almost energy-independent response of the ionizaton chamber. The Monte Carlo simulations are in good agreement with the measured values, expressed in beam quality correction factors k(Q). The agreement was generally within 0.6% but could only be achieved with an accurate model of the central electrode including its exact shape. Otherwise, deviations up to 8.5% resulted, decreasing with higher photon energies, which can be addressed to the high yield of the photoelectric effect in the electrode material aluminum at low photon energies.


Assuntos
Desenho Assistido por Computador , Eletrodos , Análise de Falha de Equipamento , Modelos Estatísticos , Radiografia/instrumentação , Radiometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Método de Monte Carlo , Doses de Radiação , Raios X
19.
Med Phys ; 35(4): 1328-36, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18491527

RESUMO

This article presents the implementation of several variance reduction techniques that dramatically improve the simulation efficiency of ion chamber dose and perturbation factor calculations. The cavity user code for the EGSnrc Monte Carlo code system is extended by photon cross-section enhancement (XCSE), an intermediate phase-space storage (IPSS) technique, and a correlated sampling (CS) scheme. XCSE increases the density of photon interaction sites inside and in the vicinity of the chamber and results-in combination with a Russian Roulette game for electrons that cannot reach the cavity volume-in an increased efficiency of up to a factor of 350 for calculating dose in a Farmer type chamber placed at 10 cm depth in a water phantom. In combination with the IPSS and CS techniques, the efficiency for the calculation of the central electrode perturbation factor Pcel can be increased by up to three orders of magnitude for a single chamber location and by nearly four orders of magnitude when considering the Pcel variation with depth or with distance from the central axis in a large field photon beam. The intermediate storage of the phase-space properties of particles entering a volume that contains many possible chamber locations leads to efficiency improvements by a factor larger than 500 when computing a profile of chamber doses in the field of a linear accelerator photon beam. All techniques are combined in a new EGSnrc user code egs_chamber. Optimum settings for the variance reduction parameters are investigated and are reported for a Farmer type ion chamber. A few example calculations illustrating the capabilities of the egs_chamber code are presented.


Assuntos
Algoritmos , Fótons/uso terapêutico , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Íons , Radiometria/instrumentação , Dosagem Radioterapêutica , Radioterapia de Alta Energia/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Phys Med Biol ; 53(11): 2823-36, 2008 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-18460747

RESUMO

This paper presents a detailed investigation into the calculation of perturbation and beam quality correction factors for ionization chambers in high-energy photon beams with the use of Monte Carlo simulations. For a model of the NE2571 Farmer-type chamber, all separate perturbation factors as found in the current dosimetry protocols were calculated in a fixed order and compared to the currently available data. Furthermore, the NE2571 Farmer-type and a model of the PTW31010 thimble chamber were used to calculate the beam quality correction factor kQ. The calculations of kQ showed good agreement with the published values in the current dosimetry protocols AAPM TG-51 and IAEA TRS-398 and a large set of published measurements. Still, some of the single calculated perturbation factors deviate from the commonly used ones; especially prepl deviates more than 0.5%. The influence of various sources of uncertainties in the simulations is investigated for the NE2571 model. The influence of constructive details of the chamber stem shows a negligible dependence on calculated values. A comparison between a full linear accelerator source and a simple collimated point source with linear accelerator photon spectra yields comparable results. As expected, the calculation of the overall beam quality correction factor is sensitive to the mean ionization energy of graphite used. The measurement setup (source-surface distance versus source-axis distance) had no influence on the calculated values.


Assuntos
Método de Monte Carlo , Fótons , Radioterapia de Alta Energia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...