Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0134341, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252393

RESUMO

UNLABELLED: Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION: ClinicalTrials.gov NCT01196871.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Isoenzimas/uso terapêutico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/sangue , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/uso terapêutico , Administração Oral , Adulto , Área Sob a Curva , Demografia , Doença de Fabry/sangue , Humanos , Bombas de Infusão , Isoenzimas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Pele/enzimologia , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/sangue , alfa-Galactosidase/uso terapêutico
2.
Neurotherapeutics ; 11(4): 840-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25037721

RESUMO

Mutation of the lysosomal hydrolase acid-ß-glucosidase (GCase), which leads to reduced GCase activity, is one of the most frequent genetic risk factors for Parkinson's disease (PD) and promotes α-synuclein accumulation in the brain, a hallmark of PD and other synucleinopathies. Whether targeting GCase pharmacologically is a valid therapeutic strategy for sporadic PD in the absence of GCase mutation is unknown. We have investigated whether increasing the stability, trafficking, and activity of wild-type GCase could be beneficial in synucleinopathies by administering the pharmacological chaperone AT2101 (afegostat-tartrate, isofagomine) to mice that overexpress human wild-type α-synuclein (Thy1-aSyn mice). AT2101 administered orally for 4 months to Thy1-aSyn mice improved motor and nonmotor function, abolished microglial inflammatory response in the substantia nigra, reduced α-synuclein immunoreactivity in nigral dopaminergic neurons, and reduced the number of small α-synuclein aggregates, while increasing the number of large α-synuclein aggregates. These data support the further investigation of pharmacological chaperones that target GCase as a therapeutic approach for sporadic PD and other synucleinopathies, even in the absence of glucocerebrosidase mutations.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Doença de Parkinson/enzimologia , Doença de Parkinson/prevenção & controle , alfa-Sinucleína/metabolismo , beta-Glucosidase/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Imino Piranoses/farmacologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tartaratos
3.
PLoS One ; 9(7): e102092, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036864

RESUMO

Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.


Assuntos
1-Desoxinojirimicina/farmacologia , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Glicogênio/metabolismo , Lisossomos/efeitos dos fármacos , Mutação , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacocinética , Administração Oral , Animais , Biocatálise/efeitos dos fármacos , Disponibilidade Biológica , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Glucana 1,4-alfa-Glucosidase/biossíntese , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
4.
J Med Chem ; 56(7): 2705-25, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23363020

RESUMO

Lysosomal enzymes are responsible for the degradation of a wide variety of glycolipids, oligosaccharides, proteins, and glycoproteins. Inherited mutations in the genes that encode these proteins can lead to reduced stability of newly synthesized lysosomal enzymes. While often catalytically competent, the mutated enzymes are unable to efficiently pass the quality control mechanisms of the endoplasmic reticulum, resulting in reduced lysosomal trafficking, substrate accumulation, and cellular dysfunction. Pharmacological chaperones (PCs) are small molecules that bind and stabilize mutant lysosomal enzymes, thereby allowing proper cellular translocation. Such compounds have been shown to increase enzyme activity and reduce substrate burden in a number of preclinical models and clinical studies. In this Perspective, we review several of the lysosomal diseases for which PCs have been studied and the SAR of the various classes of molecules.


Assuntos
Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Chaperonas Moleculares/uso terapêutico , Linhagem Celular , Glicolipídeos/metabolismo , Humanos , Relação Estrutura-Atividade
5.
J Neurosci ; 32(15): 5223-36, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496568

RESUMO

Alterations in the lipid composition of endosomal-lysosomal membranes may constitute an early event in Alzheimer's disease (AD) pathogenesis. In this study, we investigated the possibility that GM2 ganglioside accumulation in a mouse model of Sandhoff disease might be associated with the accumulation of intraneuronal and extracellular proteins commonly observed in AD. Our results show intraneuronal accumulation of amyloid-ß peptide (Aß)-like, α-synuclein-like, and phospho-tau-like immunoreactivity in the brains of ß-hexosaminidase knock-out (HEXB KO) mice. Biochemical and immunohistochemical analyses confirmed that at least some of the intraneuronal Aß-like immunoreactivity (iAß-LIR) represents amyloid precursor protein C-terminal fragments (APP-CTFs) and/or Aß. In addition, we observed increased levels of Aß40 and Aß42 peptides in the lipid-associated fraction of HEXB KO mouse brains, and intraneuronal accumulation of ganglioside-bound Aß (GAß) immunoreactivity in a brain region-specific manner. Furthermore, α-synuclein and APP-CTFs and/or Aß were found to accumulate in different regions of the substantia nigra, indicating different mechanisms of accumulation or turnover pathways. Based on the localization of the accumulated iAß-LIR to endosomes, lysosomes, and autophagosomes, we conclude that a significant accumulation of iAß-LIR may be associated with the lysosomal-autophagic turnover of Aß and fragments of APP-containing Aß epitopes. Importantly, intraneuronal GAß immunoreactivity, a proposed prefibrillar aggregate found in AD, was found to accumulate throughout the frontal cortices of postmortem human GM1 gangliosidosis, Sandhoff disease, and Tay-Sachs disease brains. Together, these results establish an association between the accumulation of gangliosides, autophagic vacuoles, and the intraneuronal accumulation of proteins associated with AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Gangliosídeos/metabolismo , Hexosaminidase B/genética , Lisossomos/fisiologia , Doença de Sandhoff/patologia , Adulto , Animais , Western Blotting , Química Encefálica/genética , Química Encefálica/fisiologia , Pré-Escolar , Gangliosídeo G(M2)/metabolismo , Humanos , Imuno-Histoquímica , Lactente , Metabolismo dos Lipídeos , Bulbo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medula Espinal/metabolismo , Substância Negra/metabolismo , Adulto Jovem , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
6.
FEBS J ; 277(7): 1618-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148966

RESUMO

Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid beta-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG on L444P GCase. Incubation of Gaucher patient-derived lymphoblastoid cell lines (LCLs) or fibroblasts with IFG led to approximately 3.5- and 1.3-fold increases in L444P GCase activity, respectively, as measured in cell lysates. The effect in fibroblasts was increased approximately 2-fold using glycoprotein-enrichment, GCase-immunocapture, or by incubating cells overnight in IFG-free media prior to assay, methods designed to maximize GCase activity by reducing IFG carryover and inhibition in the enzymatic assay. IFG incubation also increased the lysosomal trafficking and in situ activity of L444P GCase in intact cells, as measured by reduction in endogenous glucosylceramide levels. Importantly, this reduction was seen only following three-day incubation in IFG-free media, underscoring the importance of IFG removal to restore lysosomal GCase activity. In mice expressing murine L444P GCase, oral administration of IFG resulted in significant increases (2- to 5-fold) in GCase activity in disease-relevant tissues, including brain. Additionally, eight-week IFG administration significantly lowered plasma chitin III and IgG levels, and 24-week administration significantly reduced spleen and liver weights. Taken together, these data suggest that IFG can increase the lysosomal activity of L444P GCase in cells and tissues. Moreover, IFG is orally available and distributes into multiple tissues, including brain, and may thus merit therapeutic evaluation for patients with neuronopathic and non-neuronopathic Gaucher disease.


Assuntos
Doença de Gaucher/genética , Imino Piranoses/química , Doenças por Armazenamento dos Lisossomos/genética , Mutação , beta-Glucosidase/genética , Animais , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Glucosilceramidase/metabolismo , Humanos , Masculino , Camundongos , Microscopia Confocal/métodos , Chaperonas Moleculares/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Virchows Arch ; 451(4): 823-34, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17674039

RESUMO

The pathogenesis of Fabry disease is poorly understood. We used a variety of immunohistological techniques to localize globotriaosylceramide, the main glycolipid that accumulates in Fabry disease. Globotriaosylceramide immunoreactivity in a heterogenous pattern was present in all organs examined of a patient on long-term enzyme replacement therapy. In the brain, immmunopositivity was found only in the parahippocampal region. Globotriaosylceramide immunostaining was present in the cell membrane and cytoplasm of endothelial cells, even in the absence of lysosomal inclusions. In kidney tissue, globotriaosylceramide colocalized with lysosomal, endoplasmic reticulum, and nuclear markers. Pre- and postembedding immunogold electron microscopy of skin biopsies and untreated patient cultured skin fibroblasts confirmed the presence of globotriaosylceramide in the cell membrane, in various cytoplasmic structures, and in the nucleus. Control organ tissues and cultured fibroblasts from five unaffected subjects were uniformly negative for globotriaosylceramide by immunohistochemistry and immunogold electron microscopy. We conclude that a substantial amount of lysosomal and extralysosomal globotriaosylceramide immunoreactivity remains in cells and tissues even after years of enzyme replacement therapy in Fabry disease. These findings are crucial for the understanding of the disease mechanism and suggest the usefulness of immunostaining for globotriaosylceramide as a means to assess response to novel, specific therapies.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Doença de Fabry/metabolismo , Lisossomos/metabolismo , Triexosilceramidas/metabolismo , Adulto , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Células Cultivadas , Retículo Endoplasmático/patologia , Retículo Endoplasmático/ultraestrutura , Doença de Fabry/etiologia , Doença de Fabry/patologia , Humanos , Rim/metabolismo , Rim/patologia , Lisossomos/patologia , Lisossomos/ultraestrutura , Pessoa de Meia-Idade , Pele/metabolismo , Pele/patologia
8.
Nat Chem Biol ; 3(2): 101-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17187079

RESUMO

Gaucher disease results from mutations in the lysosomal enzyme acid beta-glucosidase (GCase). Although enzyme replacement therapy has improved the health of some affected individuals, such as those with the prevalent N370S mutation, oral treatment with pharmacological chaperones may be therapeutic in a wider range of tissue compartments by restoring sufficient activity of endogenous mutant GCase. Here we demonstrate that isofagomine (IFG, 1) binds to the GCase active site, and both increases GCase activity in cell lysates and restores lysosomal trafficking in cells containing N370S mutant GCase. We also compare the crystal structures of IFG-bound GCase at low pH with those of glycerol-bound GCase at low pH and apo-GCase at neutral pH. Our data indicate that IFG induces active GCase, which is secured by interactions with Asn370. The design of small molecules that stabilize substrate-bound conformations of mutant proteins may be a general therapeutic strategy for diseases caused by protein misfolding and mistrafficking.


Assuntos
Doença de Gaucher/enzimologia , Glucosilceramidase/química , Piperidinas/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Imino Piranoses/química , Imino Piranoses/farmacologia , Modelos Moleculares , Piperidinas/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
9.
Biopolymers ; 74(5): 363-76, 2004 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15222016

RESUMO

The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1-30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C(alpha)-amide "capped" synthetic polypeptides representing the 1-30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 x -DD- in AP7-1, -DDDED- in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended beta-strand or polyproline type II-like structure within the A11-M10, S12-V13, and S28-I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1-S9 and Q14-N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10-N13, Q17-N24, and M29-F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7-AP24 protein modification of calcium carbonate growth.


Assuntos
Moluscos/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Calcificação Fisiológica , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
10.
Biopolymers ; 70(4): 522-33, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14648763

RESUMO

Ethylenediamine-tetraacetic acid extracted water-soluble matrix proteins in molluscan shells secreted from the mantle epithelia are believed to control crystal nucleation, morphology, orientation, and phase of the deposited mineral. Previously, atomic force microscopy demonstrated that abalone nacre proteins bind to growing step edges and to specific crystallographic faces of calcite, suggesting that inhibition of calcite growth may be one of the molecular processes required for growth of the less thermodynamically stable aragonite phase. Previous experiments were done with protein mixtures. To elucidate the role of single proteins, we have characterized two proteins isolated from the aragonitic component of nacre of the red abalone, Haliotis rufescens. These proteins, purified by hydrophobic interaction chromatography, are designated AP7 and AP24 (aragonitic protein of molecular weight 7 kDa and 24 kDa, respectively). Degenerate oligonucleotide primers corresponding to N-terminal and internal peptide sequences were used to amplify cDNA clones by a polymerase chain reaction from a mantle cDNA library; the deduced primary amino acid sequences are presented. Preliminary crystal growth experiments demonstrate that protein fractions enriched in AP7 and AP24 produced CaCO(3) crystals with morphology distinct from crystals grown in the presence of the total mixture of soluble aragonite-specific proteins. Peptides corresponding to the first 30 residues of the N-terminal sequences of both AP7 and AP24 were generated. The synthetic peptides frustrate the progression of step edges of a growing calcite surface, indicating that sequence features within the N-termini of AP7 and AP24 include domains that interact with CaCO(3). CD analyses demonstrate that the N-terminal peptide sequences do not possess significant percentages of alpha-helix or beta-strand secondary structure in solution. Instead, in both the presence and absence of Ca(II), the peptides retain unfolded conformations that may facilitate protein-mineral interaction.


Assuntos
Carbonato de Cálcio/química , Moluscos/química , Proteínas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carbonato de Cálcio/metabolismo , Dicroísmo Circular , Modelos Moleculares , Dados de Sequência Molecular , Moluscos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas/isolamento & purificação , Proteínas/metabolismo
11.
Connect Tissue Res ; 44 Suppl 1: 10-5, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12952167

RESUMO

The lustrin superfamily represents a unique group of biomineralization proteins localized between layered aragonite mineral plates (i.e., nacre layers) in mollusk shell. These proteins not only exhibit elastomeric behavior within the mineralized matrix, but also adhesion to the aragonite-containing composite layer. One member of the lustrin superfamily, Lustrin A, has been sequenced; the protein is organized into defined, modular sequence domains that are hypothesized to perform separate functions (i.e., force unfolding, mineral adhesion, intermolecular binding) within the Lustrin A protein. Using nuclear magnetic resonance (NMR) and in vitro mineralization assays, we investigated structure-function relationships for two Lustrin A putative mineral binding domains, the 30 AA Arg, Lys, Tyr, Ser-rich (RKSY) and the 24 AA Asp-rich (D4) sequence regions domain of the Lustrin A protein. The results indicate that both sequences adopt open, unfolded structures that represent either extended or random coil states. Using geologic calcite overgrowth assays and scanning electron microscopic analyses, we observe that the RKSY polypeptide does not significantly perturb calcium carbonate growth. However, the D4 domain does influence crystal growth in a concentration-dependent manner. Collectively, our data indicate that D4, and not the RKSY domain, exhibits structure-function activity consistent with a mineral binding region.


Assuntos
Biopolímeros/química , Calcificação Fisiológica/fisiologia , Proteínas da Matriz Extracelular/química , Sequência de Aminoácidos , Animais , Eletrólitos/química , Proteínas da Matriz Extracelular/síntese química , Dados de Sequência Molecular , Moluscos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
12.
Biopolymers ; 65(5): 362-72, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12389216

RESUMO

Fracture resistance in biomineralized structures has been linked to the presence of proteins, some of which possess sequences that are associated with elastic behavior. One such protein superfamily, the Pro,Gly-rich sea urchin intracrystalline spicule matrix proteins, form protein-protein supramolecular assemblies that modify the microstructure and fracture-resistant properties of the calcium carbonate mineral phase within embryonic sea urchin spicules and adult sea urchin spines. In this report, we detail the identification of a repetitive keratin-like "glycine-loop"- or coil-like structure within the 34-AA (AA: amino acid) N-terminal domain, (PGMG)(8)PG, of the spicule matrix protein, PM27. The identification of this repetitive structural motif was accomplished using two capped model peptides: a 9-AA sequence, GPGMGPGMG, and a 34-AA peptide representing the entire motif. Using CD, NMR spectrometry, and molecular dynamics simulated annealing/minimization simulations, we have determined that the 9-AA model peptide adopts a loop-like structure at pH 7.4. The structure of the 34-AA polypeptide resembles a coil structure consisting of repeating loop motifs that do not exhibit long-range ordering. Given that loop structures have been associated with protein elastic behavior and protein motion, it is plausible that the 34-AA Pro,Gly,Met repeat sequence motif in PM27 represents a putative elastic or mobile domain.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Sequências Repetitivas de Aminoácidos , Ouriços-do-Mar
13.
Biopolymers ; 63(6): 358-69, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11920437

RESUMO

The lustrin superfamily represents a unique group of biomineralization proteins localized between layered aragonite mineral plates (i.e., nacre layer) in mollusk shell. Recent atomic force microscopy (AFM) pulling studies have demonstrated that the lustrin-containing organic nacre layer in the abalone, Haliotis rufescens, exhibits a typical sawtooth force-extension curve with hysteretic recovery. This force extension behavior is reminiscent of reversible unfolding and refolding in elastomeric proteins such as titin and tenascin. Since secondary structure plays an important role in force-induced protein unfolding and refolding, the question is, What secondary structure(s) exist within the major domains of Lustrin A? Using a model peptide (FPGKNVNCTSGE) representing the 12-residue consensus sequence found near the N-termini of the first eight cysteine-rich domains (C-domains) within the Lustrin A protein, we employed CD, NMR spectroscopy, and simulated annealing/minimization to determine the secondary structure preferences for this sequence. At pH 7.4, we find that the 12-mer sequence adopts a loop conformation, consisting of a "bend" or "turn" involving residues G3-K4 and N7-C8-T9, with extended conformations arising at F1-G3; K4-V6; T9-S10-G11 in the sequence. Minor pH-dependent conformational effects were noted for this peptide; however, there is no evidence for a salt-bridge interaction between the K4 and E12 side chains. The presence of a loop conformation within the highly conserved -PG-, -NVNCT- sequence of C1-C8 domains may have important structural and mechanistic implications for the Lustrin A protein with regard to elastic behavior.


Assuntos
Proteínas da Matriz Extracelular/química , Sequência de Aminoácidos , Dicroísmo Circular , Sequência Consenso , Proteínas da Matriz Extracelular/síntese química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...