Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 12(21): 4153-4161, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665617

RESUMO

It is increasingly becoming clear that neurodegenerative diseases are not as discrete as originally thought to be but display significant overlap in histopathological and clinical presentations. For example, nearly half of the patients with Alzheimer's disease (AD) and synucleinopathies such as Parkinson's disease (PD) show symptoms and pathological features of one another. Yet, the molecular events and features that underlie such comorbidities in neurodegenerative diseases remain poorly understood. Here, inspired to uncover the molecular underpinnings of the overlap between AD and PD, we investigated the interactions between amyloid-ß (Aß) and α-synuclein (αS), aggregates of which form the major components of amyloid plaques and Lewy bodies, respectively. Specifically, we focused on αS oligomers generated from the dopamine metabolite called dihydroxyphenylacetaldehyde (DOPAL) and a polyunsaturated fatty acid docosahexaenoic acid (DHA). The two αS oligomers showed structural and conformational differences as confirmed by the disparity in size, secondary structure, susceptibility to proteinase K digestion, and cytotoxicity. More importantly, the two oligomers differentially modulated Aß aggregation; while both inhibited Aß aggregation to varying extents, they also induced structurally different Aß assemblies. Furthermore, Aß seeded with DHA-derived αS oligomers showed greater toxicity than DOPAL-derived αS oligomers in SH-SY5Y neuroblastoma cells. These results provide insights into the interactions between two amyloid proteins with empirically distinctive biophysical and cellular manifestations, enunciating a basis for potentially ubiquitous cross-amyloid interactions across many neurodegenerative diseases.


Assuntos
Dopamina , alfa-Sinucleína , Amiloide , Peptídeos beta-Amiloides , Ácidos Graxos Insaturados , Humanos
2.
J Mol Biol ; 433(10): 166953, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33771571

RESUMO

Aberrant aggregation and amyloid formation of tar DNA binding protein (TDP-43) and α-synuclein (αS) underlie frontotemporal dementia (FTD) and Parkinson's disease (PD), respectively. Amyloid inclusions of TDP-43 and αS are also commonly co-observed in amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Emerging evidence from cellular and animal models show colocalization of the TDP-43 and αS aggregates, raising the possibility of direct interactions and co-aggregation between the two proteins. In this report, we set out to answer this question by investigating the interactions between αS and prion-like pathogenic C-terminal domain of TDP-43 (TDP-43 PrLD). PrLD is an aggregation-prone fragment generated both by alternative splicing as well as aberrant proteolytic cleavage of full length TDP-43. Our results indicate that two proteins interact in a synergistic manner to augment each other's aggregation towards hybrid fibrils. While monomers, oligomers and sonicated fibrils of αS seed TDP-43 PrLD monomers, TDP-43 PrLD fibrils failed to seed αS monomers indicating selectivity in interactions. Furthermore, αS modulates liquid droplets formed by TDP-43 PrLD and RNA to promote insoluble amyloid aggregates. Importantly, the cross-seeded hybrid aggregates show greater cytotoxicity as compared to the individual homotypic aggregates suggesting that the interactions between the two proteins have a discernable impact on cellular functions. Together, these results bring forth insights into TDP-43 PrLD - αS interactions that could help explain clinical and pathological presentations in patients with co-morbidities involving the two proteins.


Assuntos
Amiloide/química , Proteínas de Ligação a DNA/química , Neurônios/efeitos dos fármacos , RNA/química , alfa-Sinucleína/química , Processamento Alternativo , Amiloide/genética , Amiloide/metabolismo , Amiloide/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/toxicidade , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Príons/química , Príons/genética , Príons/metabolismo , Príons/toxicidade , Agregados Proteicos/genética , Ligação Proteica , Domínios Proteicos , Proteólise , RNA/genética , RNA/metabolismo , Sonicação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA