Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 411: 49-55, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25974853

RESUMO

Different fungi, including the genera Neosartorya, Byssochlamys and Talaromyces, produce (asco)spores that survive pasteurization treatments and are regarded as the most stress-resistant eukaryotic cells. Here, the NMR analysis of a series of trehalose-based oligosaccharides, being compatible solutes that are accumulated to high levels in ascospores of the fungus Neosartorya fischeri, is presented. These oligosaccharides consist of an α,α-trehalose backbone, extended with one [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp; isobemisiose], two [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp] or three [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp] glucose units. The tetra- and pentasaccharide, dubbed neosartose and fischerose, respectively, have not been reported before to occur in nature.


Assuntos
Aspergillus/química , Polissacarídeos Fúngicos/química , Esporos Fúngicos/química , Trealose/química , Aspergillus/fisiologia , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia em Gel , Polissacarídeos Fúngicos/isolamento & purificação , Dados de Sequência Molecular , Trealose/isolamento & purificação
2.
Environ Microbiol ; 17(2): 383-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25040022

RESUMO

Fungal propagules survive stresses better than vegetative cells. Neosartorya fischeri, an Aspergillus teleomorph, forms ascospores that survive high temperatures or drying followed by heat. Not much is known about maturation and development of extreme stress resistance in fungal cells. This study provides a novel two-step model for the acquisition of extreme stress resistance and entry into dormancy. Ascospores of 11- and 15-day-old cultures exhibited heat resistance, physiological activity, accumulation of compatible solutes and a steep increase in cytoplasmic viscosity. Electron spin resonance spectroscopy indicated that this stage is associated with the removal of bulk water and an increase of chemical stability. Older ascospores from 15- to 50-day-old cultures showed no changes in compatible solute content and cytoplasmic viscosity, but did exhibit a further increase of heat resistance and redox stability with age. This stage was also characterized by changes in the composition of the mixture of compatible solutes. Mannitol levels decreased and the relative quantities of trehalose and trehalose-based oligosaccharides increased. Dormant ascospores of N. fischeri survive in low-water habitats. After activation of the germination process, the stress resistance decreases, compatible solutes are degraded and the cellular viscosity drops. After 5 h, the hydrated cells enter the vegetative stage and redox stability has decreased notably.


Assuntos
Manitol/metabolismo , Neosartorya/crescimento & desenvolvimento , Neosartorya/metabolismo , Esporos Fúngicos/metabolismo , Trealose/metabolismo , Citoplasma/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Temperatura Alta , Oxirredução , Viscosidade , Água/metabolismo
3.
Environ Microbiol ; 17(2): 395-411, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25040129

RESUMO

Ascospores of Neosartorya, Byssochlamys and Talaromyces can be regarded as the most stress-resistant eukaryotic cells. They can survive exposure at temperatures as high as 85°C for 100 min or more. Neosartorya fischeri ascospores are more viscous and more resistant to the combined stress of heat and desiccation than the ascospores of Talaromyces macrosporus which contain predominantly trehalose. These ascospores contain trehalose-based oligosaccharides (TOS) that are novel compatible solutes, which are accumulated to high levels. These compounds are also found in other members of the genus Neosartorya and in some other genera within the order Eurotiales that also include Byssochlamys and Talaromyces. The presence of oligosaccharides was observed in species that had a relatively high growth temperature. TOS glasses have a higher glass transition temperature (Tg ) than trehalose, and they form a stable glass with crystallizing molecules, such as mannitol. Our data indicate that TOS are important for prolonged stabilization of cells against stress. The possible unique role of these solutes in protection against dry heat conditions is discussed.


Assuntos
Neosartorya/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico/fisiologia , Talaromyces/metabolismo , Trealose/metabolismo , Desidratação , Microbiologia de Alimentos , Temperatura Alta , Prevalência , Esporos Fúngicos/crescimento & desenvolvimento , Temperatura , Viscosidade
4.
Adv Appl Microbiol ; 85: 43-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23942148

RESUMO

Spores are an integral part of the life cycle of the gross majority of fungi. Their morphology and the mode of formation are both highly variable among the fungi, as is their resistance to stressors. The main aim for spores is to be dispersed, both in space, by various mechanisms or in time, by an extended period of dormancy. Some fungal ascospores belong to the most stress-resistant eukaryotic cells described to date. Stabilization is a process in which biomolecules and complexes thereof are protected by different types of molecules against heat, drought, or other molecules. This review discusses the most important compounds that are known to protect fungal spores and also addresses the biophysics of cell protection. It further covers the phenomena of dormancy, breaking of dormancy, and early germination. Germination is the transition from a dormant cell toward a vegetative cell and includes a number of specific changes. Finally, the applied aspects of spore biology are discussed.


Assuntos
Temperatura Alta , Esporos Fúngicos , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...