Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell Rep ; 42(4): 112344, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37018073

RESUMO

Pre-clinical studies of fragile X syndrome (FXS) have focused on neurons, with the role of glia remaining largely underexplored. We examined the astrocytic regulation of aberrant firing of FXS neurons derived from human pluripotent stem cells. Human FXS cortical neurons, co-cultured with human FXS astrocytes, fired frequent short-duration spontaneous bursts of action potentials compared with less frequent, longer-duration bursts of control neurons co-cultured with control astrocytes. Intriguingly, bursts fired by FXS neurons co-cultured with control astrocytes are indistinguishable from control neurons. Conversely, control neurons exhibit aberrant firing in the presence of FXS astrocytes. Thus, the astrocyte genotype determines the neuronal firing phenotype. Strikingly, astrocytic-conditioned medium, and not the physical presence of astrocytes, is capable of determining the firing phenotype. The mechanistic basis of this effect indicates that the astroglial-derived protein, S100ß, restores normal firing by reversing the suppression of a persistent sodium current in FXS neurons.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Astrócitos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Técnicas de Cocultura
2.
Mol Autism ; 13(1): 34, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850732

RESUMO

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/metabolismo , Medo/fisiologia , Congelamento , Humanos , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Ratos
4.
J Physiol ; 599(24): 5417-5449, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748643

RESUMO

Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Some survivors develop a severe, acute or delayed myasthenic syndrome. In animal models, similar myasthenia has been associated with increasing plasma concentration of one insecticide solvent metabolite, cyclohexanol. We investigated possible mechanisms using voltage and current recordings from mouse neuromuscular junctions (NMJs) and transfected human cell lines. Cyclohexanol (10-25 mM) reduced endplate potential (EPP) amplitudes by 10-40% and enhanced depression during repetitive (2-20 Hz) stimulation by up to 60%. EPP decay was prolonged more than twofold. Miniature EPPs were attenuated by more than 50%. Cyclohexanol inhibited whole-cell currents recorded from CN21 cells expressing human postjunctional acetylcholine receptors (hnAChR) with an IC50 of 3.74 mM. Cyclohexanol (10-20 mM) also caused prolonged episodes of reduced-current, multi-channel bursting in outside-out patch recordings from hnAChRs expressed in transfected HEK293T cells, reducing charge transfer by more than 50%. Molecular modelling indicated cyclohexanol binding (-6 kcal/mol) to a previously identified alcohol binding site on nicotinic AChR α-subunits. Cyclohexanol also increased quantal content of evoked transmitter release by ∼50%. In perineurial recordings, cyclohexanol selectively inhibited presynaptic K+ currents. Modelling indicated cyclohexanol binding (-3.8 kcal/mol) to voltage-sensitive K+ channels at the same site as tetraethylammonium (TEA). TEA (10 mM) blocked K+ channels more effectively than cyclohexanol but EPPs were more prolonged in 20 mM cyclohexanol. The results explain the pattern of neuromuscular dysfunction following ingestion of organophosphorus insecticides containing cyclohexanol precursors and suggest that cyclohexanol may facilitate investigation of mechanisms regulating synaptic strength at NMJs. KEY POINTS: Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Survivors may develop a severe myasthenic syndrome or paralysis, associated with increased plasma levels of cyclohexanol, an insecticide solvent metabolite. Analysis of synaptic transmission at neuromuscular junctions in isolated mouse skeletal muscle, using isometric tension recording and microelectrode recording of endplate voltages and currents, showed that cyclohexanol reduced postsynaptic sensitivity to acetylcholine neurotransmitter (reduced quantal size) while simultaneously enhancing evoked transmitter release (increased quantal content). Patch recording from transfected cell lines, together with molecular modelling, indicated that cyclohexanol causes selective, allosteric antagonism of postsynaptic nicotinic acetylcholine receptors and block of presynaptic K+ -channel function. The data provide insight into the cellular and molecular mechanisms of neuromuscular weakness following intentional ingestion of agricultural organophosphorus insecticides. Our findings also extend understanding of the effects of alcohols on synaptic transmission and homeostatic synaptic function.


Assuntos
Cicloexanóis , Junção Neuromuscular , Animais , Células HEK293 , Humanos , Camundongos , Placa Motora , Receptores Colinérgicos , Transmissão Sináptica
5.
Cell Rep ; 37(2): 109805, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644573

RESUMO

Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in vitro and in vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Comportamento Animal , Medo , Síndrome do Cromossomo X Frágil/fisiopatologia , Rememoração Mental , Plasticidade Neuronal , Transmissão Sináptica , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/psicologia , Masculino , Ratos Sprague-Dawley , Ratos Transgênicos , Receptor de Glutamato Metabotrópico 5/metabolismo
6.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363811

RESUMO

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Assuntos
Aminoácidos Excitatórios/fisiologia , Neurotransmissores/fisiologia , Receptores de Glutamato/fisiologia , Animais , Aminoácidos Excitatórios/farmacologia , Humanos , Receptores de Glutamato/efeitos dos fármacos , Sinapses/fisiologia
7.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326063

RESUMO

The ability of neurons to produce behaviorally relevant activity in the absence of pathology relies on the fine balance of synaptic inhibition to excitation. In the hippocampal CA1 microcircuit, this balance is maintained by a diverse population of inhibitory interneurons that receive largely similar glutamatergic afferents as their target pyramidal cells, with EPSCs generated by both AMPA receptors (AMPARs) and NMDA receptors (NMDARs). In this study, we take advantage of a recently generated GluN2A-null rat model to assess the contribution of GluN2A subunits to glutamatergic synaptic currents in three subclasses of interneuron found in the CA1 region of the hippocampus. For both parvalbumin-positive and somatostatin-positive interneurons, the GluN2A subunit is expressed at glutamatergic synapses and contributes to the EPSC. In contrast, in cholecystokinin (CCK)-positive interneurons, the contribution of GluN2A to the EPSC is negligible. Furthermore, synaptic potentiation at glutamatergic synapses on CCK-positive interneurons does not require the activation of GluN2A-containing NMDARs but does rely on the activation of NMDARs containing GluN2B and GluN2D subunits.


Assuntos
Interneurônios , Receptores de N-Metil-D-Aspartato , Animais , Hipocampo/metabolismo , Interneurônios/metabolismo , Ratos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
8.
Neuropharmacology ; 196: 108609, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000273

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are present in the majority of brain circuits and play a key role in synaptic information transfer and synaptic plasticity. A key element of many brain circuits are inhibitory GABAergic interneurons that in themselves show diverse and cell-type-specific NMDAR expression and function. Indeed, NMDARs located on interneurons control cellular excitation in a synapse-type specific manner which leads to divergent dendritic integration properties amongst the plethora of interneuron subtypes known to exist. In this review, we explore the documented diversity of NMDAR subunit expression in identified subpopulations of interneurons and assess the NMDAR subtype-specific control of their function. We also highlight where knowledge still needs to be obtained, if a full appreciation is to be gained of roles played by NMDARs in controlling GABAergic modulation of synaptic and circuit function. This article is part of the 'Special Issue on Glutamate Receptors - NMDA receptors'.


Assuntos
Encéfalo/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Encéfalo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Interneurônios/metabolismo , Vias Neurais , Neurônios/metabolismo , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
9.
J Physiol ; 599(11): 2771-2775, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872415

Assuntos
Redação
10.
Mol Neurodegener ; 16(1): 13, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663561

RESUMO

BACKGROUND: Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. METHODS: To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. RESULTS: We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. CONCLUSION: These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Humanos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética
11.
Brain Commun ; 3(4): fcab255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35350711

RESUMO

Oligodendrocytes are implicated in amyotrophic lateral sclerosis pathogenesis and display transactive response DNA-binding protein-43 (TDP-43) pathological inclusions. To investigate the cell autonomous consequences of TDP-43 mutations on human oligodendrocytes, we generated oligodendrocytes from patient-derived induced pluripotent stem cell lines harbouring mutations in the TARDBP gene, namely G298S and M337V. Through a combination of immunocytochemistry, electrophysiological assessment via whole-cell patch clamping, and three-dimensional cultures, no differences in oligodendrocyte differentiation, maturation or myelination were identified. Furthermore, expression analysis for monocarboxylate transporter 1 (a lactate transporter) coupled with a glycolytic stress test showed no deficit in lactate export. However, using confocal microscopy, we report TDP-43 mutation-dependent pathological mis-accumulation of TDP-43. Furthermore, using in vitro patch-clamp recordings, we identified functional Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysregulation in oligodendrocytes. Together, these findings establish a platform for further interrogation of the role of oligodendrocytes and cellular autonomy in TDP-43 proteinopathy.

12.
Cell Rep ; 32(6): 107988, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783927

RESUMO

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Células Piramidais/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Camundongos
13.
Mol Autism ; 11(1): 52, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560741

RESUMO

BACKGROUND: Fragile X syndrome (FXS), a neurodevelopmental disorder, is a leading monogenetic cause of intellectual disability and autism spectrum disorder. Notwithstanding the extensive studies using rodent and other pre-clinical models of FXS, which have provided detailed mechanistic insights into the pathophysiology of this disorder, it is only relatively recently that human stem cell-derived neurons have been employed as a model system to further our understanding of the pathophysiological events that may underlie FXS. Our study assesses the physiological properties of human pluripotent stem cell-derived cortical neurons lacking fragile X mental retardation protein (FMRP). METHODS: Electrophysiological whole-cell voltage- and current-clamp recordings were performed on two control and three FXS patient lines of human cortical neurons derived from induced pluripotent stem cells. In addition, we also describe the properties of an isogenic pair of lines in one of which FMR1 gene expression has been silenced. RESULTS: Neurons lacking FMRP displayed bursts of spontaneous action potential firing that were more frequent but shorter in duration compared to those recorded from neurons expressing FMRP. Inhibition of large conductance Ca2+-activated K+ currents and the persistent Na+ current in control neurons phenocopies action potential bursting observed in neurons lacking FMRP, while in neurons lacking FMRP pharmacological potentiation of voltage-dependent Na+ channels phenocopies action potential bursting observed in control neurons. Notwithstanding the changes in spontaneous action potential firing, we did not observe any differences in the intrinsic properties of neurons in any of the lines examined. Moreover, we did not detect any differences in the properties of miniature excitatory postsynaptic currents in any of the lines. CONCLUSIONS: Pharmacological manipulations can alter the action potential burst profiles in both control and FMRP-null human cortical neurons, making them appear like their genetic counterpart. Our studies indicate that FMRP targets that have been found in rodent models of FXS are also potential targets in a human-based model system, and we suggest potential mechanisms by which activity is altered.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Potenciais de Ação/efeitos dos fármacos , Adolescente , Animais , Diferenciação Celular/efeitos dos fármacos , Pré-Escolar , Humanos , Indóis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Riluzol/farmacologia , Canais de Sódio/metabolismo , Veratridina/farmacologia , Adulto Jovem
14.
Nat Commun ; 10(1): 4814, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645553

RESUMO

Sensory hypersensitivity is a common and debilitating feature of neurodevelopmental disorders such as Fragile X Syndrome (FXS). How developmental changes in neuronal function culminate in network dysfunction that underlies sensory hypersensitivities is unknown. By systematically studying cellular and synaptic properties of layer 4 neurons combined with cellular and network simulations, we explored how the array of phenotypes in Fmr1-knockout (KO) mice produce circuit pathology during development. We show that many of the cellular and synaptic pathologies in Fmr1-KO mice are antagonistic, mitigating circuit dysfunction, and hence may be compensatory to the primary pathology. Overall, the layer 4 network in the Fmr1-KO exhibits significant alterations in spike output in response to thalamocortical input and distorted sensory encoding. This developmental loss of layer 4 sensory encoding precision would contribute to subsequent developmental alterations in layer 4-to-layer 2/3 connectivity and plasticity observed in Fmr1-KO mice, and circuit dysfunction underlying sensory hypersensitivity.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Simulação por Computador , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Fenótipo , Córtex Somatossensorial/citologia
15.
Nat Commun ; 10(1): 4813, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645626

RESUMO

Cellular and circuit hyperexcitability are core features of fragile X syndrome and related autism spectrum disorder models. However, the cellular and synaptic bases of this hyperexcitability have proved elusive. We report in a mouse model of fragile X syndrome, glutamate uncaging onto individual dendritic spines yields stronger single-spine excitation than wild-type, with more silent spines. Furthermore, fewer spines are required to trigger an action potential with near-simultaneous uncaging at multiple spines. This is, in part, from increased dendritic gain due to increased intrinsic excitability, resulting from reduced hyperpolarization-activated currents, and increased NMDA receptor signaling. Using super-resolution microscopy we detect no change in dendritic spine morphology, indicating no structure-function relationship at this age. However, ultrastructural analysis shows a 3-fold increase in multiply-innervated spines, accounting for the increased single-spine glutamate currents. Thus, loss of FMRP causes abnormal synaptogenesis, leading to large numbers of poly-synaptic spines despite normal spine morphology, thus explaining the synaptic perturbations underlying circuit hyperexcitability.


Assuntos
Potenciais de Ação/fisiologia , Espinhas Dendríticas/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese , Neurônios/metabolismo , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Córtex Somatossensorial/citologia , Sinapses/ultraestrutura
16.
Mol Psychiatry ; 24(11): 1641-1654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481758

RESUMO

Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption of  white matter integrity compared with familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) derived case oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro. Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced when  compared with controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Translocação Genética/genética , Adulto , Animais , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 11/genética , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Transtornos Mentais/genética , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Substância Branca/metabolismo , Substância Branca/fisiologia
17.
Pharmacol Res Perspect ; 7(4): e00495, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31249692

RESUMO

N-methyl-D-aspartate (NMDA) receptors are glutamate receptors with key roles in synaptic plasticity, due in part to their Mg2+ mediated voltage-dependence. A large number of genetic variants affecting NMDA receptor subunits have been found in people with a range of neurodevelopmental disorders, including GluN2AN615K (GRIN2AC1845A) in two unrelated individuals with severe epileptic encephalopathy. This missense variant substitutes a lysine in place of an asparagine known to be important for blockade by Mg2+ and other small molecule channel blockers. We therefore measured the impact of GluN2AN615K on a range of NMDA receptor channel blockers using two-electrode voltage clamp recordings made in Xenopus oocytes. We found that GluN2AN615K resulted in block by Mg2+ 1 mmol/L being greatly reduced (89% vs 8%), block by memantine 10 µmol/L (76% vs 27%) and amantadine 100 µmol/L (45% vs 17%) being substantially reduced, block by ketamine 10 µmol/L being modestly reduced (79% vs 73%) and block by dextromethorphan 10 µmol/L being enhanced (45% vs 55%). Coapplying Mg2+ with memantine or amantadine did not reduce the GluN2AN615K block seen with either small molecule. In addition, we measured single-channel conductance of GluN2AN615K-containing NMDA receptors in outside-out patches pulled from Xenopus oocytes, finding a 4-fold reduction in conductance (58 vs 15 pS). In conclusion, the GluN2AN615K variant is associated with substantial changes to important physiological and pharmacological properties of the NMDA receptor. Our findings are consistent with GluN2AN615K having a disease-causing role, and inform potential therapeutic strategies.


Assuntos
Substituição de Aminoácidos , Oócitos/citologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Amantadina/farmacologia , Animais , Dextrometorfano/farmacologia , Feminino , Humanos , Ketamina/farmacologia , Magnésio/farmacologia , Memantina/farmacologia , Mutação de Sentido Incorreto , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/genética , Xenopus
18.
Sci Transl Med ; 11(494)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142675

RESUMO

Fragile X Syndrome (FXS) is one of the most common monogenic forms of autism and intellectual disability. Preclinical studies in animal models have highlighted the potential of pharmaceutical intervention strategies for alleviating the symptoms of FXS. However, whether treatment strategies can be tailored to developmental time windows that define the emergence of particular phenotypes is unknown. Similarly, whether a brief, early intervention can have long-lasting beneficial effects, even after treatment cessation, is also unknown. To address these questions, we first examined the developmental profile for the acquisition of associative learning in a rat model of FXS. Associative memory was tested using a range of behavioral paradigms that rely on an animal's innate tendency to explore novelty. Fmr1 knockout (KO) rats showed a developmental delay in their acquisition of object-place recognition and did not demonstrate object-place-context recognition paradigm at any age tested (up to 23 weeks of age). Treatment of Fmr1 KO rats with lovastatin between 5 and 9 weeks of age, during the normal developmental period that this associative memory capability is established, prevents the emergence of deficits but has no effect in wild-type animals. Moreover, we observe no regression of cognitive performance in the FXS rats over several months after treatment. This restoration of the normal developmental trajectory of cognitive function is associated with the sustained rescue of both synaptic plasticity and altered protein synthesis. The findings provide proof of concept that the impaired emergence of the cognitive repertoire in neurodevelopmental disorders may be prevented by brief, early pharmacological intervention.


Assuntos
Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/terapia , Aprendizagem , Animais , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lovastatina/farmacologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Análise e Desempenho de Tarefas
19.
Methods Mol Biol ; 1936: 65-77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820893

RESUMO

The in vitro generation of defined cellular populations from induced human pluripotent stem cells (iPSCs) provides the opportunity to work routinely with human material and, importantly, allows examination of material derived from patients with clinically and genetically diagnosed disorders. In this regard, the ability to derive oligodendrocytes in vitro represents an important resource to examine human oligodendrocyte-lineage cell biology in normal and disease contexts. Oligodendrocytes undergo characteristic physiological maturation during differentiation in vitro, and patch-clamp electrophysiology allows a detailed examination of maturation state and, potentially, pathologically related variations of ion channel expression and regulation. Here, we detail our methodology to generate oligodendrocyte precursor cells and oligodendrocytes and characterize them electrophysiologically.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Oligodendroglia/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Fenômenos Eletrofisiológicos , Humanos , Técnicas de Patch-Clamp
20.
J Physiol ; 597(6): 1691-1704, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604514

RESUMO

KEY POINTS: NMDA receptors are neurotransmitter-gated ion channels that are critically involved in brain cell communication Variations in genes encoding NMDA receptor subunits have been found in a range of neurodevelopmental disorders. We investigated a de novo genetic variant found in patients with epileptic encephalopathy that changes a residue located in the ion channel pore of the GluN2A NMDA receptor subunit. We found that this variant (GluN2AN615K ) impairs physiologically important receptor properties: it markedly reduces Mg2+ blockade and channel conductance, even for receptors in which one GluN2AN615K is co-assembled with one wild-type GluN2A subunit. Our findings are consistent with the GluN2AN615K mutation being the primary cause of the severe neurodevelopmental disorder in carriers. ABSTRACT: NMDA receptors are ionotropic calcium-permeable glutamate receptors with a voltage-dependence mediated by blockade by Mg2+ . Their activation is important in signal transduction, as well as synapse formation and maintenance. Two unrelated individuals with epileptic encephalopathy carry a de novo variant in the gene encoding the GluN2A NMDA receptor subunit: a N615K missense variant in the M2 pore helix (GRIN2AC1845A ). We hypothesized that this variant underlies the neurodevelopmental disorders in carriers and explored its functional consequences by electrophysiological analysis in heterologous systems. We focused on GluN2AN615K co-expressed with wild-type GluN2 subunits in physiologically relevant triheteromeric NMDA receptors containing two GluN1 and two distinct GluN2 subunits, whereas previous studies have investigated the impact of the variant in diheteromeric NMDA receptors with two GluN1 and two identical GluN2 subunits. We found that GluN2AN615K -containing triheteromers showed markedly reduced Mg2+ blockade, with a value intermediate between GluN2AN615K diheteromers and wild-type NMDA receptors. Single-channel conductance was reduced by four-fold in GluN2AN615K diheteromers, again with an intermediate value in GluN2AN615K -containing triheteromers. Glutamate deactivation rates were unaffected. Furthermore, we expressed GluN2AN615K in cultured primary mouse cortical neurons, observing a decrease in Mg2+ blockade and reduction in current density, confirming that the variant continues to have significant functional impact in neuronal systems. Our results demonstrate that the GluN2AN615K variant has substantial effects on NMDA receptor properties fundamental to the roles of the receptor in synaptic plasticity, even when expressed alongside wild-type subunits. This work strengthens the evidence indicating that the GluN2AN615K variant underlies the disabling neurodevelopmental phenotype in carriers.


Assuntos
Potenciais de Ação , Epilepsia/genética , Mutação de Sentido Incorreto , Receptores de N-Metil-D-Aspartato/genética , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Magnésio/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...