Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 609(7926): 313-319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045297

RESUMO

The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1-11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan 'disaster faunas' (refs. 12-14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging-there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15-18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19-21 and India19,22-including the earliest dinosaurs-should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa's oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day.


Assuntos
Dinossauros , Ecossistema , Animais , Clima , Fósseis , História Antiga , Filogenia , Filogeografia , Densidade Demográfica , Dinâmica Populacional , Esqueleto , Zimbábue
2.
Zebrafish ; 14(1): 1-7, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27409411

RESUMO

Long-term in vivo imaging in adult zebrafish (i.e., 1-24 h) has been limited by the fact that regimens for long-term anesthesia in embryos and larvae are ineffective in adults. Here, we examined the potential for dynamic administration of benzocaine to enable long-term anesthesia in adult zebrafish. We developed a computer-controlled perfusion system comprised of programmable peristaltic pumps that enabled automatic exchange between anesthetic and system water. Continuous administration of benzocaine in adult zebrafish resulted in a mean time to respiratory arrest of 5.0 h and 8-h survival of 14.3%. We measured characteristic sedation and recovery times in response to benzocaine, and used them to devise an intermittent dosing regimen consisting of 14.5 min of benzocaine followed by 5.5 min of system water. Intermittent benzocaine administration in adult zebrafish resulted in a mean time to respiratory arrest of 7.6 h and 8-h survival of 71.4%. Finally, we performed a single 24-h trial and found that intermittent dosing maintained anesthesia in an adult zebrafish over the entire 24-h period. In summary, our studies demonstrate the potential for dynamic administration of benzocaine to enable prolonged anesthesia in adult zebrafish, expanding the potential for imaging in adult physiologies that unfold over 1-24 h.


Assuntos
Anestesia/veterinária , Anestésicos Locais/administração & dosagem , Benzocaína/administração & dosagem , Imagem com Lapso de Tempo/métodos , Peixe-Zebra/fisiologia , Anestesia/métodos , Animais , Imagem com Lapso de Tempo/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...