Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 7(1): 1-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17407400

RESUMO

We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.


Assuntos
Meio Ambiente Extraterreno , Fotossíntese , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Ecossistema , Exobiologia , Fenômenos Geológicos , Geologia , Voo Espacial
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 59(10): 2277-90, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12909141

RESUMO

The vital UV-protective and photosynthetic pigments of cyanobacteria and lichens (microbial symbioses) that dominate primary production in Antarctic desert ecosystems auto-fluoresce at short-wavelengths. A long wavelength (1064 nm) near infra-red laser has been used for non-intrusive Raman spectroscopic analysis of their ecologically significant compounds. There is now much interest in the construction of portable Raman systems for the analysis of cyanobacterial and lichen communities in the field; to this extent, Raman spectra obtained with laboratory-based systems operating at wavelengths of 852 and 1064 nm have been evaluated for potential fieldwork applications of miniaturised units. Selected test specimens of the cyanobacterial Nostoc commune, epilithic lichens Acarospora chlorophana, Xanthoria elegans and Caloplaca saxicola and the endolithic Chroococcidiopsis from Antarctic sites have been examined in the present study. Although some organisms gave useable Raman spectra with short-wavelength lasers, 1064 nm was the only excitation that was consistently excellent for all organisms. We conclude that a 1064 nm Raman spectrometer, miniaturised using an InGaAs detector, is the optimal instrument for in situ studies of pigmented communities at the limits of life on Earth. This has practical potential for the quest for biomolecules residual from any former surface or subsurface life on Mars.


Assuntos
Biomarcadores/química , Cianobactérias/química , Líquens/química , Regiões Antárticas , Marte , Análise Espectral Raman
3.
J Photochem Photobiol B ; 68(1): 23-32, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12208033

RESUMO

Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance.


Assuntos
Bacillus subtilis/efeitos da radiação , Gelo , Neve , Raios Ultravioleta , Regiões Antárticas , Biofilmes/efeitos da radiação , DNA/efeitos da radiação , Eucariotos/crescimento & desenvolvimento , Eucariotos/efeitos da radiação , Cinética , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...