Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Clin Med ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337338

RESUMO

Chronic pain is the most prevalent disease worldwide, leading to substantial disability and socioeconomic burden. Therefore, it can be regarded as a public health disease and major challenge to scientists, clinicians and affected individuals. Behavioral lifestyle factors, such as, physical (in)activity, stress, poor sleep and an unhealthy diet are increasingly recognized as perpetuating factors for chronic pain. Yet, current management options for patients with chronic pain often do not address lifestyle factors in a personalized multimodal fashion. This state-of-the-art clinical perspective aims to address this gap by discussing how clinicians can simultaneously incorporate various lifestyle factors into a personalized multimodal lifestyle intervention for individuals with chronic pain. To do so the available evidence on (multimodal) lifestyle interventions targeting physical (in)activity, stress, sleep and nutritional factors, specifically, was reviewed and synthetized from a clinical point of view. First, advise is provided on how to design a personalized multimodal lifestyle approach for a specific patient. Subsequently, best-evidence recommendations on how to integrate physical (in)activity, stress, sleep and nutritional factors as treatment targets into a personalized multimodal lifestyle approach are outlined. Evidence supporting such a personalized multimodal lifestyle approach is growing, but further studies are needed.

3.
Biomolecules ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254671

RESUMO

Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dor Crônica , Humanos , Sistema Nervoso Central , Sensibilização do Sistema Nervoso Central , Doenças Neuroinflamatórias
4.
Haematologica ; 109(1): 256-271, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470139

RESUMO

Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is incurable because of the inevitable development of drug resistance. Methionine adenosyltransferase 2α (MAT2A) is the primary producer of the methyl donor S-adenosylmethionine (SAM) and several studies have documented MAT2A deregulation in different solid cancers. As the role of MAT2A in MM has not been investigated yet, the aim of this study was to clarify the potential role and underlying molecular mechanisms of MAT2A in MM, exploring new therapeutic options to overcome drug resistance. By analyzing publicly available gene expression profiling data, MAT2A was found to be more highly expressed in patient-derived myeloma cells than in normal bone marrow plasma cells. The expression of MAT2A correlated with an unfavorable prognosis in relapsed patients. MAT2A inhibition in MM cells led to a reduction in intracellular SAM levels, which resulted in impaired cell viability and proliferation, and induction of apoptosis. Further mechanistic investigation demonstrated that MAT2A inhibition inactivated the mTOR-4EBP1 pathway, accompanied by a decrease in protein synthesis. MAT2A targeting in vivo with the small molecule compound FIDAS-5 was able to significantly reduce tumor burden in the 5TGM1 model. Finally, we found that MAT2A inhibition can synergistically enhance the anti-MM effect of the standard-of-care agent bortezomib on both MM cell lines and primary human CD138+ MM cells. In summary, we demonstrate that MAT2A inhibition reduces MM cell proliferation and survival by inhibiting mTOR-mediated protein synthesis. Moreover, our findings suggest that the MAT2A inhibitor FIDAS-5 could be a novel compound to improve bortezomib-based treatment of MM.


Assuntos
Mieloma Múltiplo , S-Adenosilmetionina , Humanos , S-Adenosilmetionina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Bortezomib/farmacologia , Prognóstico , Serina-Treonina Quinases TOR , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo
5.
J Clin Med ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36983246

RESUMO

Stress has been consistently linked to negative impacts on physical and mental health. More specifically, patients with chronic pain experience stress intolerance, which is an exacerbation or occurrence of symptoms in response to any type of stress. The pathophysiological mechanisms underlying this phenomenon remain unsolved. In this state-of-the-art paper, we summarised the role of the autonomic nervous system (ANS) and hypothalamus-pituitary-adrenal (HPA) axis, the two major stress response systems in stress intolerance. We provided insights into such mechanisms based on evidence from clinical studies in both patients with chronic pain, showing dysregulated stress systems, and healthy controls supported by preclinical studies, highlighting the link between these systems and symptoms of stress intolerance. Furthermore, we explored the possible regulating role for (epi)genetic mechanisms influencing the ANS and HPA axis. The link between stress and chronic pain has become an important area of research as it has the potential to inform the development of interventions to improve the quality of life for individuals living with chronic pain. As stress has become a prevalent concern in modern society, understanding the connection between stress, HPA axis, ANS, and chronic health conditions such as chronic pain is crucial to improve public health and well-being.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...