Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1241739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609118

RESUMO

Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.

2.
Front Chem ; 11: 1235437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601908

RESUMO

Introduction: Plant pathogenic microorganisms adversely affect the growth and yield of crops, which consequently leads to losses in food production. Metal-based nanoparticles (MNPs) can be a remedy to solve this problem. Methods: Novel silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were biosynthesized from Fusarium solani IOR 825 and characterized using Dynamic Light Scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and measurement of Zeta potential. Antibacterial activity of NPs was evaluated against four plant pathogenic strains by determination of the minimum inhibitory (MIC) and biocidal concentrations (MBC). Micro-broth dilution method and poisoned food technique were used to assess antifungal activity of NPs against a set of plant pathogens. Effect of nanopriming with both types of MNPs on maize seed germination and seedlings growth was evaluated at a concentration range of 1-256 µg mL-1. Results: Mycosynthesis of MNPs provided small (8.27 nm), spherical and stable (zeta potential of -17.08 mV) AgNPs with good crystallinity. Similarly, ZnONPs synthesized by using two different methods (ZnONPs(1) and ZnONPs(2)) were larger in size (117.79 and 175.12 nm, respectively) with Zeta potential at -9.39 and -21.81 mV, respectively. The FTIR spectra showed the functional groups (hydroxyl, amino, and carboxyl) of the capping molecules on the surface of MNPs. The values of MIC and MBC of AgNPs against bacteria ranged from 8 to 256 µg mL-1 and from 512 to 1024 µg mL-1, respectively. Both types of ZnONPs displayed antibacterial activity at 256-1024 µg mL-1 (MIC) and 512-2048 µg mL-1 (MBC), but in the concentration range tested, they revealed no activity against Pectobacterium carotovorum. Moreover, AgNPs and ZnONPs inhibited the mycelial growth of Alternaria alternata, Fusarium culmorum, Fusarium oxysporum, Phoma lingam, and Sclerotinia sclerotiorum. MIC and MFC values of AgNPs ranged from 16-128 and 16-2048 µg mL -1, respectively. ZnONPs showed antifungal activity with MIC and MFC values of 128-2048 µg mL-1 and 256-2048 µg mL-1, respectively. The AgNPs at a concentration of ≥32 µg mL-1 revealed sterilization effect on maize seeds while ZnONPs demonstrated stimulatory effect on seedlings growth at concentrations of ≥16 µg mL-1 by improving the fresh and dry biomass production by 24% and 18%-19%, respectively. Discussion: AgNPs and ZnONPs mycosynthesized from F. solani IOR 825 could be applied in agriculture to prevent the spread of pathogens. However, further toxicity assays should be performed before field evaluation. In view of the potential of ZnONPs to stimulate plant growth, they could be crucial in increasing crop production from the perspective of current food assurance problems.

3.
Front Microbiol ; 14: 1125685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891391

RESUMO

Introduction: Due to the increasing resistance of bacteria and fungi to antimicrobials, it is necessary to search for effective alternatives to prevent and treat pathogens causing diseases in humans, animals, and plants. In this context, the mycosynthesized silver nanoparticles (AgNPs) are considered as a potential tool to combat such pathogenic microorganisms. Methods: AgNPs were synthesized from Fusarium culmorum strain JTW1 and characterized by Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Nanoparticle Tracking Analysis (NTA), Dynamic Light Scattering (DLS) and Zeta potential measurement. The minimum inhibitory (MIC) and biocidal concentrations (MBC) were determined against 13 bacterial strains. Moreover, the combined effect of AgNPs with antibiotics (streptomycin, kanamycin, ampicillin, tetracycline) was also studied by determining the Fractional Inhibitory Concentration (FIC) index. The anti-biofilm activity was examined by crystal violet and fluorescein diacetate (FDA) assays. Furthermore, antifungal activity of AgNPs was evaluated against a panel of phytopathogenic fungi viz., Botrytis, Colletotrichum, Fusarium, Phoma, Sclerotinia, and an oomycete pathogen Phytophthora by agar well-diffusion and micro-broth dilution method to evaluate the minimal AgNPs concentrations that inhibit fungal spore germination. Results: Fungi-mediated synthesis resulted in the formation of small (15.56 ± 9.22 nm), spherical and stable (zeta potential of - 38.43 mV) AgNPs with good crystallinity. The results of FTIR spectroscopy indicated the presence of various functional groups, namely hydroxyl, amino, and carboxyl ones, from the biomolecules on the surface of AgNPs. The AgNPs showed antimicrobial and antibiofilm formation activities against Gram-positive and Gram-negative bacteria. The values of MIC and MBC ranged between 16-64 and 32-512 µg mL-1, respectively. The enhanced effect of AgNPs in combination with antibiotics was confirmed against human pathogens. The highest synergistic effect (FIC = 0.0625) was demonstrated by the combination of AgNPs with streptomycin against two strains of Escherichia coli (ATCC 25922 and ATCC 8739), followed by Klebsiella pneumoniae and Pseudomonas aeruginosa (FIC = 0.125). Enhanced effects of AgNPs with ampicillin were also shown against Staphylococcus aureus ATCC 25923 (FIC = 0.125) and P. aeruginosa (FIC = 0.25), as well as kanamycin against S. aureus ATCC 6538 (FIC = 0.25). The crystal violet assay revealed that the lowest concentration of AgNPs (0.125 µg mL-1) reduced the development of biofilms of Listeria monocytogenes and Salmonella enterica, while the maximum resistance was shown by Salmonella infantis, its biofilm was reduced after exposure to a concentration of 512 µg mL-1. A high inhibitory effect on the activity of bacterial hydrolases was observed by the FDA assay. AgNPs at a concentration of 0.125 µg mL-1 reduced the hydrolytic activity of all biofilms formed by the tested pathogens, except E. coli ATCC 25922, P. aeruginosa, and Pectobacterium carotovorum (efficient concentration was 2-fold higher, at 0.25 µg mL-1), while the hydrolytic activity of E. coli ATCC 8739, Salmonella infantis and S. aureus ATCC 6538 was suppressed after treatment with AgNPs at concentrations of 0.5, 2 and 8 µg mL-1, respectively. Moreover, AgNPs inhibited fungal growth and spore germination of Botrytis cinerea, Phoma lingam, and Sclerotinia sclerotiorum. MIC and MFC values of AgNPs against spores of these fungal strains were determined at 64, 256, and 32 µg mL-1, and zones of growth inhibition were 4.93, 9.54, and 3.41 mm, respectively. Discussion: Fusarium culmorum strain JTW1 was found to be an eco-friendly biological system for an easy, efficient and inexpensive synthesis of AgNPs. In our study, the mycosynthesised AgNPs demonstrated remarkable antimicrobial (antibacterial and antifungal) and antibiofilm activities against a wide range of human and plant pathogenic bacteria and fungi singly and in combination with antibiotics. These AgNPs could be applied in medicine, agriculture, and food industry to control such pathogens that cause numerous human diseases and crop losses. However, before using them extensive animal studies are required to evaluate the toxicity, if any.

4.
J Microbiol Biotechnol ; 32(9): 1195-1208, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36116918

RESUMO

Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/ MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.


Assuntos
Anti-Infecciosos , Antineoplásicos , Nanopartículas Metálicas , Ampicilina , Antibacterianos/química , Anti-Infecciosos/metabolismo , Antineoplásicos/química , Escherichia coli/metabolismo , Humanos , Canamicina , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Porinas , Prata/química , Solo , Estreptomicina , Tetraciclinas
5.
Front Chem ; 10: 1106230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704616

RESUMO

Natural polymer-based nanocomposites have received significant attention in both scientific and industrial research in recent years. They can help to eliminate the consequences of application of petroleum-derived polymeric materials and related environmental concerns. Such nanocomposites consist of natural biopolymers (e.g., chitosan, starch, cellulose, alginate and many more) derived from plants, microbes and animals that are abundantly available in nature, biodegradable and thus eco-friendly, and can be used for developing nanocomposites for agriculture and food industry applications. Biopolymer-based nanocomposites can act as slow-release nanocarriers for delivering agrochemicals (fertilizers/nutrients) or pesticides to crop plants to increase yields. Similarly, biopolymer-based nanofilms or hydrogels may be used as direct product coating to extend product shelf life or improve seed germination or protection from pathogens and pests. Biopolymers have huge potential in food-packaging. However, their packaging properties, such as mechanical strength or gas, water or microbial barriers can be remarkably improved when combined with nanofillers such as nanoparticles. This article provides an overview of the strategic applications of natural polymer nanocomposites in food and agriculture as nanocarriers of active compounds, polymer-based hydrogels, nanocoatings and nanofilms. However, the risk, challenges, chances, and consumers' perceptions of nanotechnology applications in agriculture and food production and packaging have been also discussed.

6.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948392

RESUMO

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Glucanos/biossíntese , Antibacterianos , Anti-Infecciosos/química , Antifúngicos , COVID-19 , Quitina/farmacologia , Quitosana/química , Resistência a Múltiplos Medicamentos/fisiologia , Embalagem de Alimentos , Glucanos/metabolismo , Glucanos/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanocompostos/química , Nisina/farmacologia , Polímeros/química , SARS-CoV-2
7.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835665

RESUMO

Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.

8.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672920

RESUMO

The taxonomic status of two filamentous actinobacteria, isolates NF23 and NL8T, recovered from the litter layer of a pine forest soil in Poland was established in a genome-based polyphasic study. The isolates showed a combination of chemotaxonomic, morphological and physiological properties associated with their classification in the genus Catenulispora. They formed a well supported lineage within the Catenulispora 16S rRNA gene tree and were most closely related to the type strains of Catenulispora acidiphila (99.1%), Catenulispora pinisilvae (99.9 %) and Catenulispora rubra (99.1 %), and like them, were found to have large genomes (10.8 and 11.5 Mbp, respectively). A phylogenomic tree based on the draft genomes of isolates NF23 and NL8T and their phylogenetic neighbours showed that they formed a distinct branch in the Catenulispora clade that was most closely related to C. pinisilvae DSM 111109T. The isolates shared a combination of genomic, genotypic and phenotypic features, and had high average nucleotide index (ANI) and digital DNA:DNA hybridization (dDDH) similarities consistent with their assignment to the same species. The isolates were distinguished from the C. acidiphila, C. pinisilvae and C. rubra strains by a wealth of taxonomic data and by low ANI (84.9-93.9 %) and dDDH (29.6-54.7 %) values. It is proposed that the isolates be classified in the genus Catenulispora as C. pinistramenti sp. nov. with isolate NL8T (=DSM 111110T=PCM 3045T) as the type strain. The genomes of strains NF23 and NL8T are rich in natural product-biosynthetic gene clusters hence these strains have the potential to synthesize new specialised metabolites.


Assuntos
Actinobacteria , Filogenia , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , Hibridização de Ácido Nucleico , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Front Microbiol ; 12: 632505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967977

RESUMO

The increasing number of multi-drug-resistant bacteria and cancer cases, that are a real threat to humankind, forces research world to develop new weapons to deal with it. Biogenic silver nanoparticles (AgNPs) are considered as a solution to this problem. Biosynthesis of AgNPs is regarded as a green, eco-friendly, low-priced process that provides small and biocompatible nanostructures with antimicrobial and anticancer activities and potential application in medicine. The biocompatibility of these nanoparticles is related to the coating with biomolecules of natural origin. The synthesis of AgNPs from actinobacterial strain was confirmed using UV-Vis spectroscopy while their morphology, crystalline structure, stability, and coating were characterized using, transmission electron microscopy (TEM), X-ray diffraction (XRD), Zeta potential and Fourier transform infrared spectroscopy (FTIR). Antibacterial activity of biogenic AgNPs was evaluated by determination of minimum inhibitory and minimum biocidal concentrations (MIC and MBC) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. The potential mechanism of antibacterial action of AgNPs was determined by measurement of ATP level. Since the use of AgNPs in biomedical applications depend on their safety, the in vitro cytotoxicity of biosynthesized AgNPs on MCF-7 human breast cancer cell line and murine macrophage cell line RAW 264.7 using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, cell lactate dehydrogenase (LDH) release and measurement of reactive oxygen species (ROS) level were assessed. The nanoparticle protein capping agent that can be involved in reduction of silver ions to AgNPs and their stabilization was identified using LC-MS/MS. Nanoparticles were spherical in shape, small in size (mean 13.2 nm), showed crystalline nature, good stability (-18.7 mV) and presence of capping agents. They exhibited antibacterial activity (MIC of 8-128 µg ml-1, MBC of 64-256 µg ml-1) and significantly decreased ATP levels in bacterial cells after treatment with different concentrations of AgNPs. The in vitro analysis showed that the AgNPs demonstrated dose-dependent cytotoxicity against RAW 264.7 macrophages and MCF-7 breast cancer cells but higher against the latter than the former. Cell viability decrease was found to be 42.2-14.2 and 38.0-15.5% while LDH leakage 14.6-42.7% and 19.0-45.0%, respectively. IC50 values calculated for MTT assay was found to be 16.3 and 12.0 µg ml-1 and for LDH assay 102.3 and 76.2 µg ml-1, respectively. Moreover, MCF-7 cells released a greater amount of ROS than RAW 264.7 macrophages during stimulation with all tested concentrations of AgNPs (1.47-3.13 and 1.02-2.58 fold increase, respectively). The SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) analysis revealed the presence of five protein bands at a molecular weight between 31.7 and 280.9 kDa. These proteins showed the highest homology to hypothetical proteins and porins from E. coli, Delftia sp. and Pseudomonas rhodesiae. Based on obtained results it can be concluded that biogenic AgNPs were capped with proteins and demonstrated potential as antimicrobial and anticancer agent.

10.
Syst Appl Microbiol ; 44(1): 126164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33360072

RESUMO

Two actinobacteria, strains NF3 and NH11T, isolated from a pine forest soil, near Torun, Poland were examined for diverse chemotaxonomic and morphological properties that placed them in the genus Catenulispora. They produced an extensively branched stable mycelium, contained LL-diaminopimelic acid as the diamino acid of the peptidoglycan, arabinose as the diagnostic whole-organism sugar, tetra-, hexa- and octa-hydrogenated menaquinones with nine isoprenoid units as the predominant isoprenologues, iso-C16:0 and anteiso-C17:0 as major fatty acids, and formed a well supported clade within the Catenulispora 16S rRNA gene tree together with Catenulispora acidiphila DSM 44928T and Catenulispora rubra DSM 44948T sharing sequence similarities with the latter of 98.8 and 99.0%, respectively. The sizes of whole genome sequences generated for the isolates and the C. rubra strain ranged from 11.20 to 12.80 Mbp with corresponding in silico DNA G+C values of 69.9-70.0%. The isolates and the C. acidiphila and C. rubra strains formed a well supported branch in the actinobacterial phylogenomic tree. Isolates NF3 and NH11T belong to the same species as they have identical 16S rRNA gene sequences, share many chemotaxonomic, cultural and phenotypic features and show very high average nucleotide identity (ANI) and digital DNA:DNA relatedness (dDDH) similarities. They can be distinguished from their closest phylogenomic neighbours by using a combination of chemotaxonomic and phenotypic properties and by ANI and dDDH values well below the thresholds of these metrics used to assign closely related strains to different species. Consequently, we propose that the isolates be classified as a new Catenulispora species, Catenulispora pinisilvae sp. nov., the type strain is NH11T (=DSM 111109T =PCM 3046T). An emended description is given for C. rubra based on data acquired in the present study. Analyses of the draft genomes of the isolates and the C. acidiphila and C. rubra strains revealed the presence of many biosynthetic gene clusters with the potential to synthesize novel drug-like metabolites. In vitro screens showed that the isolates inhibited the growth of Gram-positive bacteria and wheat pathogens belonging to the genus Fusarium.


Assuntos
Actinobacteria/classificação , Florestas , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Pinus , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Syst Appl Microbiol ; 43(6): 126153, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33161356

RESUMO

A polyphasic study was undertaken to establish the taxonomic position of six representative streptomycetes isolated from an alkaline soil adjacent to a meteoric alkaline soda lake in India. Chemotaxonomic, cultural and morphological properties of the isolates were consistent with their classification in the genus Streptomyces. The isolates formed extensively branched substrate mycelia and aerial hyphae that differentiated in straight chains of spores with smooth surfaces. They contained LL-diaminopimelic acid in the wall peptidoglycan, produced either hexa- or octa-hydrogenated menaquinones with nine isoprene units, major amounts of saturated, iso- and anteiso- fatty acids and phosphatidylethanolamine as the characteristic polar lipid. The isolates grew well at 30 °C, pH 9 and in the presence of 3 to 5% (w/v) sodium chloride. Isolates OF1T, OF3 and OF8 formed a distinct clade within the Streptomyces 16S rRNA gene tree sharing relatively high sequence similarities with the type strains of Streptomyces durbertensis (99.3%), Streptomyces palmae (98.1%) and Streptomyces xinghaiensis (98.3%), but can be distinguished from them using combinations of phenotypic properties. A phylogenomic tree based on draft genome sequences of the isolates and S. durbertensis DSM 104538T confirmed the phylogenetic relationships. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values calculated from the whole genome sequences of isolate OF1T and S. durbertensis DSM 104538T were low at 92.0% and 45.2%, respectively, indicating that they belong to different genomic species. Consequently, on the basis of the genomic, phylogenetic and associated phenotypic data it is proposed that isolates OF1T, OF3 and OF8 be assigned to the genus Streptomyces as Streptomyces alkaliterrae sp. nov. with strain OF1T (NCIMB 15195T =PCM 3001T) as the type strain. Isolates IF11, IF17 and IF19, and S. alkaliphilus DSM 42118T were shown to belong to the same taxospecies and together with S. calidiresistens DSM 42108T comprised a well supported clade in the Streptomyces 16S rRNA gene tree. Isolate IF17 and S. alkaliphilus DSM 42118T formed a well-supported clade in the phylogenomic tree, had almost identical digital G + C similarity values, produced long straight chains of smooth-surfaced spores and shared ANI and dDDH values (98.0 and 79.6%, respectively) consistent with their assignment to the same genomic species. In light of all of the data isolates IF11, IF17 and IF19 should be seen as authentic stains of S. alkalihilus. Data acquired in the present study have also been used to emend the descriptions of S. alkaliphilus, S. calidiresistens and S. durbertensis. The genomes of isolates IF17, and OF1T, OF3 and OF8 contain relatively high numbers of biosynthetic gene clusters some of which were discontinously distributed indicating ones predicted to express for novel specialised metabolites.


Assuntos
Filogenia , Microbiologia do Solo , Streptomyces/classificação , Álcalis , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Índia , Lagos , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação , Vitamina K 2/química
12.
Materials (Basel) ; 13(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937873

RESUMO

A series of new benzofuryl α-azole ketones was synthesized and reduced by asymmetric transfer hydrogenation (ATH). Novel benzofuryl ß-amino alcohols bearing an imidazolyl and triazolyl substituents were obtained with excellent enantioselectivity (96-99%). The absolute configuration (R) of the products was confirmed by means of electronic circular dichroism (ECD) spectroscopy supported by theoretical calculations. Selected benzofuryl α-azole ketones were also successfully asymmetrically bioreduced by fungi of Saccharomyces cerevisiae and Aureobasidium pullulans species. Racemic and chiral ß-amino alcohols, as well as benzofuryl α-amino and α-bromo ketones were evaluated for their antibacterial and antifungal activities. From among the synthesized ß-amino alcohols, the highest antimicrobial activity was found for (R)-1-(3,5-dimethylbenzofuran-2-yl)-2-(1H-imidazol-1-yl)ethan-1-ol against S. aureus ATCC 25923 (MIC = 64, MBC = 96 µg mL-1) and (R)-1-(3,5-dimethylbenzofuran-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-ol against yeasts of M. furfur DSM 6170 (MIC = MBC = 64 µg mL-1). In turn, from among the tested ketones, 1-(benzofuran-2-yl)-2-bromoethanones (1-4) were found to be the most active against M. furfur DSM 6170 (MIC = MBC = 1.5 µg mL-1) (MIC-minimal inhibitory concentration, MBC-minimal biocidal concentration).

13.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630696

RESUMO

The development of nanotechnology in the last two decades has led to the use of silver nanoparticles (AgNPs) in various biomedical applications, including antimicrobial, anti-inflammatory, and anticancer therapies. However, the potential of the medical application of AgNPs depends on the safety of their use. In this work, we assessed the in vitro cytotoxicity and genotoxicity of silver nanoparticles and identified biomolecules covering AgNPs synthesized from actinobacterial strain SH11. The cytotoxicity of AgNPs against MCF-7 human breast cancer cell line and murine macrophage cell line RAW 264.7 was studied by MTT assay, cell LDH (lactate dehydrogenase) release, and the measurement of ROS (reactive oxygen species) level while genotoxicity in Salmonella typhimurium cells was testing using the Ames test. The in vitro analysis showed that the tested nanoparticles demonstrated dose-dependent cytotoxicity against RAW 264.6 macrophages and MCF-7 breast cancer cells. Moreover, biosynthesized AgNPs did not show a mutagenic effect of S. typhimurium. The analyses and identification of biomolecules present on the surface of silver nanoparticles showed that they were associated with proteins. The SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) analysis revealed the presence of 34 and 43 kDa protein bands. The identification of proteins performed by using LC-MS/MS (liquid chromatography with tandem mass spectrometry) demonstrated their highest homology to bacterial porins. Capping biomolecules of natural origin may be involved in the synthesis process of AgNPs or may be responsible for their stabilization. Moreover, the presence of natural proteins on the surface of bionanoparticles eliminates the postproduction steps of capping which is necessary for chemical synthesis to obtain the stable nanostructures required for application in medicine.


Assuntos
Proteínas de Bactérias/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Actinobacteria/metabolismo , Animais , Proteínas de Bactérias/química , Citotoxinas/toxicidade , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Humanos , L-Lactato Desidrogenase/metabolismo , Células MCF-7 , Nanopartículas Metálicas/administração & dosagem , Camundongos , Testes de Mutagenicidade/métodos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Prata/química , Prata/farmacologia , Espectrofotometria Ultravioleta
14.
J Inorg Biochem ; 210: 111072, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32563102

RESUMO

Five novel rhodium(II) complexes of general formula [Rh2(µ-OOCCH3)4L2], where L is a triazolopyrimidine derivative, in particular dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) for (1), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp) for (2), 7-isobutyl-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine (ibmtp) for (3), 7-hydroxy-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine (HmtpO) for (4) and 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) for (5) are reported. These first representatives of paddle-wheel dirhodium complexes with triazolopyrimidines have been characterized by IR and NMR spectroscopy as well as by single-crystal X-ray diffraction studies. Three of the new complexes (1), (2) and (5) were thoroughly screened in vitro for their cytotoxicity against human breast cancer cell line MCF-7 and L929 murine fibroblast cells. Favorably, they show significantly less effective inhibition on the cell growth of L929 than cisplatin under identical conditions. Complexes (1) and (5) display moderate cytotoxic activity (IC50 = 16.3-21.5 µM) against MCF-7 cells which is induced via reactive oxygen species-independent pathways. Extensive studies of rhodium complexes (1), (2) and (5) against microorganisms have shown that the tested compounds exhibit antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) while (5) significantly inhibited the growth of Malassezia furfur. The highest antibacterial, and antifungal activity, was observed for (5).


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Antifúngicos/síntese química , Antifúngicos/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Malassezia/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Pirimidinas/síntese química , Pirimidinas/toxicidade , Ródio/química , Staphylococcus aureus/efeitos dos fármacos , Triazóis/síntese química , Triazóis/toxicidade
15.
J Clin Med ; 8(3)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857367

RESUMO

The chemical vapor deposition (CVD) method has been used to produce dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and nanotubular modified titanium alloys (Ti6Al4V/TNT5), leading to the formation of Ti6Al4V/AgNPs and Ti6Al4V/TNT5/AgNPs systems with different contents of metallic silver particles. Their surface morphology and silver particles arrangement were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and atomic force microscopy (AFM). The wettability and surface free energy of these materials were investigated on the basis of contact angle measurements. The degree of silver ion release from the surface of the studied systems immersed in phosphate buffered saline solution (PBS) was estimated using inductively coupled plasma ionization mass spectrometry (ICP-MS). The biocompatibility of the analyzed materials was estimated based on the fibroblasts and osteoblasts adhesion and proliferation, while their microbiocidal properties were determined against Gram-positive and Gram-negative bacteria, and yeasts. The results of our works proved the high antimicrobial activity and biocompatibility of all the studied systems. Among them, Ti6Al4V/TNT5/0.6AgNPs contained the lowest amount of AgNPs, but still revealed optimal biointegration properties and high biocidal properties. This is the biomaterial that possesses the desired biological properties, in which the potential toxicity is minimized by minimizing the number of silver nanoparticles.

16.
World J Microbiol Biotechnol ; 34(2): 23, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305718

RESUMO

We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV-Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malassezia furfur by using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum biocidal concentration of AgNPs against bacterial and yeast strains were determined. Synergistic effect of AgNPs in combination with antibacterial and antifungal antibiotics was determined by FIC index. In addition, MTT assay was performed to study cytotoxicity of AgNPs alone and in combination with antibiotics against mouse fibroblasts and HeLa cell line. Biogenic AgNPs were stable, spherical, small, polydispersed and capped with organic compounds. The variable antimicrobial activity of AgNPs was observed against tested bacteria and yeasts. The lowest MIC (16 µg ml-1) of AgNPs was found against P. aeruginosa, followed by C. albicans and M. furfur (both 32 µg ml-1), B. subtilis and E. coli (both 64 µg ml-1), and then S. aureus and Klebsiella pneumoniae (256 µg ml-1). The high synergistic effect of antibiotics in combination with AgNPs against tested strains was found. The in vitro cytotoxicity of AgNPs against mouse fibroblasts and cancer HeLa cell lines revealed a dose dependent potential. The IC50 value of AgNPs was found in concentrations of 4 and 3.8 µg ml-1, respectively. Combination of AgNPs and antibiotics significantly decreased concentrations of both antimicrobials used and retained their high antibacterial and antifungal activity. The synthesis of AgNPs using S. xinghaiensis OF1 strain is an eco-friendly, cheap and nontoxic method. The antimicrobial activity of AgNPs could result from their small size. Remarkable synergistic effect of antibiotics and AgNPs offer their valuable potential in nanomedicine for clinical application as a combined therapy in the future.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Streptomyces/metabolismo , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Índia , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/isolamento & purificação
17.
J Microbiol Immunol Infect ; 51(1): 45-54, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27103501

RESUMO

BACKGROUND/PURPOSE: In this study, an acidophilic actinobacteria strain was used as a novel reducing agent for a single-step synthesis of nanostructure silver particles. We used a Streptacidiphilus durhamensis HGG16n isolate for efficient synthesis of bioactive silver nanoparticles [bio(AgNPs)] in an inexpensive, eco-friendly, and nontoxic manner. The obtained bio(AgNPs) exhibited unique physicochemical and biochemical properties. METHODS: Structural, morphological, and optical properties of the synthesized biocolloids were characterized by spectroscopy, dynamic light scattering, and electron microscopy approaches. The antimicrobial activity was evaluated using the well- and disc-diffusion methods. RESULTS: The obtained crystalline structure and stable biosynthesized silver nanoparticles ranged in size from 8 nm to 48 nm and were mostly spherical in shape. Antimicrobial assays of the silver nanoparticles against pathogenic bacteria showed the highest antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Proteus mirabilis, followed by Escherichia coli, Klebsiella pneumoniae, and Bacillus subtilis. Moreover, the synergistic effect of bio(AgNPs) with various commercially available antibiotics was also evaluated. CONCLUSION: These results provide insight into the development of new antimicrobial agents along with synergistic enhancement of the antibacterial mechanism against clinical bacteria.


Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Prata/metabolismo , Prata/farmacologia , Streptomycetaceae/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteus mirabilis/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
18.
J Basic Microbiol ; 57(9): 793-800, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28670763

RESUMO

In this study, we present the in vitro antifungal activity of silver nanoparticles (AgNPs) synthesized from acidophilic actinobacterium Pilimelia columellifera subsp. pallida SL19 strain, alone and in combination with antibiotics viz., amphotericin B, fluconazole, and ketoconazole against pathogenic fungi, namely Candida albicans, Malassezia furfur, and Trichophyton erinacei. The minimum inhibitory concentration (MIC) and minimum biocidal concentration (MBC) of AgNPs against test fungi were evaluated. The fractional inhibitory concentration (FIC) index was determined to estimate antifungal activity of AgNPs combined with antibiotics. Antifungal activity of AgNPs varied among the tested fungal strains. M. furfur was found to be most sensitive to biogenic silver nanoparticles, followed by C. albicans and T. erinacei. The lowest MIC of AgNPs was noticed against M. furfur (16 µg ml-1 ). Synergistic effect was observed on C. albicans when AgNP were combined with amphotericin B and ketoconazole and on M. furfur with fluconazole and ketoconazole (FIC index of 0.5). Cytotoxic effect of AgNPs on HeLa and 3T3 cell lines was evaluated. The IC50 values were found to be 55 and 25 µg ml-1 , respectively. The present study indicates that silver nanoparticles from P. columellifera subsp. pallida SL19 strain have antifungal activity, both alone and in combination with antibiotics, and offer a valuable contribution to nanomedicine.


Assuntos
Actinobacteria/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Células 3T3 , Actinobacteria/metabolismo , Anfotericina B/farmacologia , Animais , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Fungos/patogenicidade , Células HeLa , Humanos , Cetoconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Micoses/microbiologia
19.
IET Nanobiotechnol ; 11(3): 336-342, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28476992

RESUMO

In this study, silver nanoparticles (AgNPs) were biosynthesised by using acidophilic actinobacterial SH11 strain isolated from pine forest soil. Isolate SH11 was identified based on 16S rRNA gene sequence to Streptomyces kasugaensis M338-M1T and S. celluloflavus NRRL B-2493T (99.8% similarity, both). Biosynthesised AgNPs were analysed by UV-visible spectroscopy, which revealed specific peak at λ = 420 nm. Transmission electron microscopy analyses showed polydispersed, spherical nanoparticles with a mean size of 13.2 nm, while Fourier transform infrared spectroscopy confirmed the presence of proteins as the capping agents over the surface of AgNPs. The zeta potential was found to be -16.6 mV, which indicated stability of AgNPs. The antibacterial activity of AgNPs from SH11 strain against gram-positive (Staphylococcus aureus and Bacillus subtilis) and gram-negative (Escherichia coli) bacteria was estimated using disc diffusion, minimum inhibitory concentration and live/dead analyses. The AgNPs showed the maximum antimicrobial activity against E. coli, followed by B. subtilis and S. aureus. Further, the synergistic effect of AgNPs in combination with commercial antibiotics (kanamycin, ampicillin, tetracycline) was also evaluated against bacterial isolates. The antimicrobial efficacy of antibiotics was found to be enhanced in the presence of AgNPs.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/administração & dosagem , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Actinobacteria/classificação , Antibacterianos/química , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Prata/química , Especificidade da Espécie , Resultado do Tratamento
20.
Crit Rev Biotechnol ; 37(6): 765-778, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27748137

RESUMO

Mycoendophytes are the fungi that occur inside the plant tissues without exerting any negative impact on the host plant. They are most frequently isolated endophytes from the leaf, stem, and root tissues of various plants. Among all fungi, the mycoendophytes as biosynthesizer of noble metal nanoparticles (NPs) are less known. However, some reports showing efficient synthesis of metal nanoparticles, mainly silver nanoparticles and its remarkable antimicrobial activity against bacterial and fungal pathogens of humans and plants. The nanoparticles synthesized from mycoendophytes present stability, polydispersity, and biocompatibility. These are non-toxic to humans and environment, can be gained in an easy and cost-effective manner, have wide applicability and could be explored as promising candidates for a variety of biomedical, pharmaceutical, and agricultural applications. Mycogenic silver nanoparticles have also demonstrated cytotoxic activity against cancer cell lines and may prove to be a promising anticancer agent. The present review focuses on the biological synthesis of metal nanoparticles from mycoendophytes and their application in medicine. In addition, different mechanisms of biosynthesis and activity of nanoparticles on microbial cells, as well as toxicity of these mycogenic metal nanoparticles, have also been discussed.


Assuntos
Nanopartículas Metálicas , Endófitos , Fungos , Humanos , Plantas , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...