Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0235635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614897

RESUMO

BACKGROUND: Normothermic ex vivo liver perfusion (NEVLP) is a promising strategy to increase the donor pool in liver transplantation. Small animal models are essential to further investigate questions regarding organ preservation and reconditioning by NEVLP. A dual vessel small animal NEVLP (dNEVLP) model was developed using metamizole as a vasodilator and compared to conventional portovenous single vessel NEVLP (sNEVLP). METHODS: Livers of male Wistar rats were perfused with erythrocyte-supplemented culture medium for six hours by either dNEVLP via hepatic artery and portal vein or portovenous sNEVLP. dNEVLP was performed either with or without metamizole treatment. Perfusion pressure and flow rates were constantly monitored. Transaminase levels were determined in the perfusate at the start and after three and six hours of perfusion. Bile secretion was monitored and bile LDH and GGT levels were measured hourly. Histopathological analysis was performed using liver and bile duct tissue samples after perfusion. RESULTS: Hepatic artery pressure was significantly lower in dNEVLP with metamizole administration. Compared to sNEVLP, dNEVLP with metamizole treatment showed higher bile production, lower levels of transaminases during and after perfusion as well as significantly lower necrosis in liver and bile duct tissue. Biochemical markers of bile duct injury showed the same trend. CONCLUSION: Our miniaturized dNEVLP system enables normothermic dual vessel rat liver perfusion. The administration of metamizole effectively ameliorates arterial vasospasm allowing for six hours of dNEVLP, with superior outcome compared to sNEVLP.


Assuntos
Dipirona/farmacologia , Transplante de Fígado , Preservação de Órgãos/métodos , Vasodilatação/efeitos dos fármacos , Animais , Pressão Arterial/efeitos dos fármacos , Bile/metabolismo , Ductos Biliares/patologia , Artéria Hepática/patologia , Fígado/irrigação sanguínea , Fígado/patologia , Testes de Função Hepática , Masculino , Ratos , Ratos Wistar
2.
Tissue Eng Part A ; 26(1-2): 57-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364485

RESUMO

Ex vivo liver machine perfusion (MP) is a promising alternative for preservation of liver grafts from extended criteria donors. Small animal models can be used to evaluate different perfusion conditions. We here describe the development of a miniaturized ex vivo MP system for rat liver grafts, evaluating cell-free and erythrocyte-based perfusion solutions, subnormothermic and normothermic temperatures, and dialysis. A perfusion chamber was designed after a suitable liver position was identified. Normothermic ex vivo liver perfusion (NEVLP) required supplementation of erythrocytes to reduce cell damage. Perfusion with erythrocytes led to rising potassium levels after 12 h (NEVLP, 16.2 mM, interquartile range [IQR]: 5.7 and subnormothermic ex vivo liver perfusion [SNEVLP], 12.8 mM, IQR: 3.5), which were normalized by dialysis using a laboratory dialysis membrane (NEVLP, 6.2 mM, IQR: 0.5 and SNEVLP, 5.3 mM, IQR: 0.1; p = 0.004). Livers treated with NEVLP conditions showed higher bile production (18.52 mg/h/g, IQR: 8.2) compared to livers perfused under SNEVLP conditions (0.4 mg/h/g, IQR: 1.2, p = 0.01). Reducing the perfusion volume from 100 to 50 mL allowed for higher erythrocyte concentrations, leading to significantly lower transaminases (15.75 U/L/mL, IQR: 2.29 vs. 5.97 U/L/mL, IQR: 18.07, p = 0.002). In conclusion, a well-designed perfusion system, appropriate oxygen carriers, dialysis, and miniaturization of the perfusion volume are critical features for successful miniaturized ex vivo liver MP. Impact Statement Ex vivo liver machine perfusion (MP) is an emerging preservation alternative to static cold storage. Even though clinical studies have shown benefits for extended criteria donor grafts, standardized systems for perfusion of rat liver grafts are not available, which are inevitable for large-scaled studies on liver reconditioning by ex vivo MP. We here comprehensively describe the development of an ex vivo rat liver perfusion system that can be used as modular setting in various approaches of liver MP. We describe pitfalls and techniques that might be of interest when establishing such perfusion systems for basic and translational research.


Assuntos
Hematócrito , Transplante de Fígado , Animais , Masculino , Modelos Animais , Perfusão/métodos , Ratos
3.
Liver Transpl ; 25(2): 275-287, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30341973

RESUMO

Normothermic ex vivo liver machine perfusion might be a superior preservation strategy for liver grafts from extended criteria donors. However, standardized small animal models are not available for basic research on machine perfusion of liver grafts. A laboratory-scaled perfusion system was developed consisting of a custom-made perfusion chamber, a pressure-controlled roller pump, and an oxygenator. Male Wistar rat livers were perfused via the portal vein for 6 hours using oxygenated culture medium supplemented with rat erythrocytes. A separate circuit was connected via a dialysis membrane to the main circuit for plasma volume expansion. Glycine was added to the flush solution, the perfusate, and the perfusion circuit. Portal pressure and transaminase release were stable over the perfusion period. Dialysis significantly decreased the potassium concentration of the perfusate and led to significantly higher bile and total urea production. Hematoxylin-eosin staining and immunostaining for single-stranded DNA and activated caspase 3 showed less sinusoidal dilatation and tissue damage in livers treated with dialysis and glycine. Although Kupffer cells were preserved, tumor necrosis factor α messenger RNA levels were significantly decreased by both treatments. For proof of concept, the optimized perfusion protocol was tested with donation after circulatory death (DCD) grafts, resulting in significantly lower transaminase release into the perfusate and preserved liver architecture compared with baseline perfusion. In conclusion, our laboratory-scaled normothermic portovenous ex vivo liver perfusion system enables rat liver preservation for 6 hours. Both dialysis and glycine treatment were shown to be synergistic for preservation of the integrity of normal and DCD liver grafts.


Assuntos
Hemodiafiltração/métodos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Perfusão/métodos , Traumatismo por Reperfusão/prevenção & controle , Aloenxertos/citologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/patologia , Animais , Modelos Animais de Doenças , Circulação Extracorpórea , Glicina/farmacologia , Hemodiafiltração/instrumentação , Humanos , Células de Kupffer/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/patologia , Transplante de Fígado , Masculino , Preservação de Órgãos/instrumentação , Soluções para Preservação de Órgãos/química , Perfusão/instrumentação , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia , Temperatura
4.
HPB Surg ; 2018: 6094936, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515073

RESUMO

Due to the shortage of liver allografts and the rising prevalence of fatty liver disease in the general population, steatotic liver grafts are considered for transplantation. This condition is an important risk factor for the outcome after transplantation. We here analyze the characteristics of the donor pool offered to the Charité - Universitätsmedizin Berlin from 2010 to 2016 with respect to liver allograft nonacceptance and steatosis hepatis. Of the 2653 organs offered to our center, 19.9% (n=527) were accepted for transplantation, 58.8% (n=1561) were allocated to other centers, and 21.3% (n = 565) were eventually discarded from transplantation. In parallel to an increase of the incidence of steatosis hepatis in the donor pool from 20% in 2010 to 30% in 2016, the acceptance rates for steatotic organs increased in our center from 22.3% to 51.5% in 2016 (p < 0.001), with the majority (86.9%; p > 0.001) having less than 30% macrovesicular steatosis hepatis. However, by 2016, the number of canceled transplantations due to higher grades of steatosis hepatis had significantly increased from 14.7% (n = 15) to 63.6% (42; p < 0.001). The rising prevalence of steatosis hepatis in the donor pool has led to higher acceptance rates of steatotic allografts. Nonetheless, steatosis hepatis remains a predominant phenomenon in discarded organs necessitating future concepts such as organ reconditioning to increase graft utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...