Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
Diabetes Metab Res Rev ; 40(4): e3813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767128

RESUMO

AIMS: The dawn phenomenon (DP) is an abnormal early morning blood glucose rise without nocturnal hypoglycaemia, which can be more easily and precisely assessed with continuous glucose monitoring (CGM). This prospective study aimed to explore the association between DP and the risk of all-cause mortality in patients with type 2 diabetes. MATERIALS AND METHODS: A total of 5542 adult inpatients with type 2 diabetes in a single centre were analysed. The magnitude of DP (ΔG) was defined as the increment in the CGM-determined glucose value from nocturnal nadir (after 24:00) to prebreakfast. Participants were stratified into four groups by ΔG: ≤1.11, 1.12-3.33, 3.34-5.55, and >5.55 mmol/L. Cox proportional hazard regression models were used to evaluate the impact of DP on all-cause mortality risk. RESULTS: During a median follow-up of 9.4 years, 1083 deaths were identified. The restricted cubic spline revealed a nonlinear (p for nonlinearity = 0.002) relationship between ΔG and the risk of all-cause mortality. A multivariate-adjusted Cox regression model including glycated haemoglobin A1c (HbA1c) showed that ΔG > 5.55 mmol/L was associated with 30% (95% CI, 1.01-1.66) higher risk of all-cause mortality, as compared with ΔG 1.12-3.33 mmol/L. CONCLUSIONS: Higher ΔG is significantly related to an increased risk of all-cause mortality in type 2 diabetes, suggesting that severe DP should be given more attention as a part of glucose management to reduce the risk of long-term adverse outcomes.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Glicemia/análise , Seguimentos , Estudos Prospectivos , Fatores de Risco , Prognóstico , Idoso , Hemoglobinas Glicadas/análise , Automonitorização da Glicemia , Causas de Morte , Biomarcadores/análise , Biomarcadores/sangue , Ritmo Circadiano/fisiologia , Hipoglicemia/mortalidade , Taxa de Sobrevida , Adulto
2.
Artigo em Inglês | MEDLINE | ID: mdl-38748992

RESUMO

OBJECTIVES: To explore whether portable budesonide-formoterol powder inhalation can ameliorate cough symptoms and improve pulmonary function recovery in patients who underwent thoracoscopic lung surgery. METHODS: Clinical data of patients who underwent thoracoscopic pulmonary resection at Henan Provincial People's Hospital between December 2022 and May 2023 were extracted. To evaluate the impact of continuous post-operative use of portable budesonide-formoterol powder inhalation, patients were divided into two groups: the control group and the case group. Next, we compared the Leicester cough score and pulmonary function indexes of the patients before surgery, one month and six month after the operation. RESULTS: A total of 188 cases were included, and the baseline demographic characteristics of both groups were well-balanced. The internal consistency of the LCQ-MC scale, as indicated by Cronbach's α coefficients, were all greater than 0.8, and there was no significant difference in LCQ-MC scores between the two groups before the operation (Z=-1.173, P=0.241). Postoperatively, the LCQ-MC score in the case group was significantly higher than that in the control group (18.66 vs. 16.79, P<0.01), with a notable statistically significant difference in the reduction of LCQ-MC scores between the two groups (1.32 vs. 3.30, P<0.01). Analysis of lung function revealed that patients in the case group exhibited significant improvements in FEV1/FVC, FVC, FEV1, PEF, MMEF75/25, MVV, DLCO and the RV/TLC indexes compared to the control group (P<0.01). CONCLUSIONS: Portable budesonide-formoterol powder inhalation can alleviate cough symptoms and promote pulmonary function recovery in patients following thoracoscopic lung surgery.

3.
Eur Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750169

RESUMO

OBJECTIVES: To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS: This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS: The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION: SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT: The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS: Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.

4.
Nano Lett ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758393

RESUMO

Topological Dirac nodal-line semimetals host topologically nontrivial electronic structure with nodal-line crossings around the Fermi level, which could affect the photocarrier dynamics and lead to novel relaxation mechanisms. Herein, by using time- and angle-resolved photoemission spectroscopy, we reveal the previously inaccessible linear dispersions of the bulk conduction bands above the Fermi level in a Dirac nodal-line semimetal PtSn4, as well as the momentum and temporal evolution of the gapless nodal lines. A surprisingly ultrafast relaxation dynamics within a few hundred femtoseconds is revealed for photoexcited carriers in the nodal line. Theoretical calculations suggest that such ultrafast carrier relaxation is attributed to the multichannel scatterings among the complex metallic bands of PtSn4 via electron-phonon coupling. In addition, a unique dynamic relaxation mechanism contributed by the highly anisotropic Dirac nodal-line electronic structure is also identified. Our work provides a comprehensive understanding of the ultrafast carrier dynamics in a Dirac nodal-line semimetal.

5.
Front Surg ; 11: 1354994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752128

RESUMO

Objective: This study aimed to investigate the clinical manifestations and prognosis of lung transplant (LTx) recipients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease (COVID-19) pandemic. Methods: The research participants were LTx recipients who underwent surgery and were regularly followed up at our center. From 1 December 2022 to 28 February 2023, during the COVID-19 pandemic in China, research participants were interviewed either online or in person. SARS-CoV-2 nucleic acid or self-tested antigens were detected according to accessibility. Diagnosis and treatment were performed according to the Diagnosis and Treatment Plan for COVID-19 (10th edition) issued by the National Health Commission of the People's Republic of China. Hospitalized patients underwent chest imaging examinations, routine blood tests, biomarkers for infection and inflammation, and biochemical tests, all of which were taken and recorded. Data were analyzed to describe the features of COVID-19 in LTx recipients. Results: In total, 52 patients were enrolled in this study, comprising 48 men and 4 women, with a mean age of 51.71 ± 11.67 years. By 1 December 2022, the mean survival period was 33.87 ± 25.97 months, of which 84.61% of the patients (44/52) had a survival period longer than 12 months. The SARS-CoV-2 infection rate in these LTx recipients was 82.69% (43/52), with 3.85% (2/52) of the infected recipients being asymptomatic, 50.00% (26/52) of the infected recipients experiencing mild COVID-19, 11.54% (6/52) having moderate COVID-19, and 17.31% (9/52) having severe or critical COVID-19. The mortality rate among severe and critical patients was 66.67% (6/9). Conclusion: LTx recipients in this cohort exhibited a notable susceptibility to SARS-CoV-2, with 82.69% of individuals diagnosed with COVID-19. Moreover, the mortality rate among critically ill patients was high.

6.
Animals (Basel) ; 14(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791655

RESUMO

The two existing clades of Galloanseres, orders Galliformes (landfowl) and Anseriformes (waterfowl), exhibit dramatically different evolutionary trends. Mitochondria serve as primary sites for energy production in organisms, and numerous studies have revealed their role in biological evolution and ecological adaptation. We assembled the complete mitogenome sequences of two species of the genus Aythya within Anseriformes: Aythya baeri and Aythya marila. A phylogenetic tree was constructed for 142 species within Galloanseres, and their divergence times were inferred. The divergence between Galliformes and Anseriformes occurred ~79.62 million years ago (Mya), followed by rapid evolution and diversification after the Middle Miocene (~13.82 Mya). The analysis of selective pressure indicated that the mitochondrial protein-coding genes (PCGs) of Galloanseres species have predominantly undergone purifying selection. The free-ratio model revealed that the evolutionary rates of COX1 and COX3 were lower than those of the other PCGs, whereas ND2 and ND6 had faster evolutionary rates. The CmC model also indicated that most PCGs in Anseriformes exhibited stronger selective constraints. Our study suggests that the distinct evolutionary trends and energy requirements of Galliformes and Anseriformes drive different evolutionary patterns in the mitogenome.

7.
Life Sci ; 348: 122694, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718855

RESUMO

AIM: Increased corpus cavernosum smooth muscle cells (CCSMCs) apoptosis in the penis due to cavernous nerve injury (CNI) is a crucial contributor to erectile dysfunction (ED). Caveolin-1 scaffolding domain (CSD)-derived peptide has been found to exert potential antiapoptotic properties. However, whether CSD peptide can alleviate CCSMCs apoptosis and ED in CNI rats remains unknown. The study aimed to determine whether CSD peptide can improve bilateral CNI-induced ED (BCNI-ED) by enhancing the antiapoptotic processes of CCSMCs. MAIN METHODS: Fifteen 10-week-old male Sprague-Dawley (SD) rats were randomly classified into three groups: sham surgery (Sham) group and BCNI groups that underwent saline or CSD peptide treatment respectively. At 3 weeks postoperatively, erectile function was assessed and the penis tissue was histologically examined. Furthermore, an in vitro model of CCSMCs apoptosis was established using transforming growth factor-beta 1 (TGF-ß1) to investigate the mechanism of CSD peptide in treating BCNI-ED. KEY FINDINGS: In BCNI rats, CSD peptide significantly prevented ED and decreased oxidative stress, the Bax/Bcl-2 ratio, and the levels of caspase3. TGF-ß1-treated CCSMCs exhibited severe oxidative stress, mitochondrial dysfunction, and apoptosis. However, CSD peptide partially reversed these alterations. SIGNIFICANCE: Exogenous CSD peptide could improve BCNI-ED by inhibiting oxidative stress, the Bax/Bcl-2 ratio, and caspase3 expression in penile tissue. The underlying mechanism might involve the regulatory effects of CSD peptide on oxidative stress, mitochondrial dysfunction, and apoptosis of CCSMCs following CNI. This study highlights CSD peptide as an effective therapy for post-radical prostatectomy ED (pRP-ED).


Assuntos
Apoptose , Caveolina 1 , Disfunção Erétil , Mitocôndrias , Miócitos de Músculo Liso , Estresse Oxidativo , Ereção Peniana , Pênis , Ratos Sprague-Dawley , Animais , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Disfunção Erétil/etiologia , Pênis/efeitos dos fármacos , Pênis/inervação , Pênis/patologia , Caveolina 1/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ereção Peniana/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Peptídeos/farmacologia
8.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793474

RESUMO

Low-alloy wear-resistant steel often requires the addition of trace alloy elements to enhance its performance while also considering the cost-effectiveness of production. In order to comparatively analyze the strengthening mechanisms of Mo and Cr elements and further explore economically feasible production processes, we designed two types of low-alloy wear-resistant steels, based on C-Mn series wear-resistant steels, with individually added Mo and Cr elements, comparing and investigating the roles of the alloying elements Mo and Cr in low-alloy wear-resistant steels. Utilizing JMatPro software to calculate Continuous Cooling Transformation (CCT) curves, conducting thermal simulation quenching experiments using a Gleeble-3800 thermal simulator, and employing equipment such as a metallographic microscope, transmission electron microscope, and tensile testing machine, this study comparatively investigated the influence of Mo and Cr on the microstructural transformation and mechanical properties of low-alloy wear-resistant steels under different cooling rates. The results indicate that the addition of the Mo element in low-alloy wear-resistant steel can effectively suppress the transformation of ferrite and pearlite, reduce the martensitic transformation temperature, and lower the critical cooling rate for complete martensitic transformation, thereby promoting martensitic transformation. Adding Cr elements can reduce the austenite transformation zone, decrease the rate of austenite formation, and promote the occurrence of low-temperature phase transformation. Additionally, Mo has a better effect on improving the toughness of low-temperature impact, and Cr has a more significant improvement in strength and hardness. The critical cooling rates of C-Mn-Mo steel and C-Mn-Cr steel for complete martensitic transition are 13 °C/s and 24 °C/s, respectively. With the increase in the cooling rate, the martensitic tissues of the two experimental steels gradually refined, and the characteristics of the slats gradually appeared. In comparison, the C-Mn-Mo steel displays a higher dislocation density, accompanied by dislocation entanglement phenomena, and contains a small amount of residual austenite, while granular ε-carbides are clearly precipitated in the C-Mn-Cr steel. The C-Mn-Mo steel achieves its best performance at a cooling rate of 25 °C/s, whereas the C-Mn-Cr steel only needs to increase the cooling rate to 35 °C/s to attain a similar comprehensive performance to the C-Mn-Mo steel.

9.
Nanomedicine ; : 102754, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797223

RESUMO

Exocytosis is a critical factor for designing efficient nanocarriers and determining cytotoxicity. However, the research on the exocytosis mechanism of nanoparticles, especially the role of long non-coding RNAs (lncRNA), has not been reported. In this study, the exocytosis of AuNPs in the KYSE70 cells and the involved molecular pathways of exocytosis are analyzed. It demonstrates that nanoparticles underwent time-dependent release from the cells by exocytosis, and the release of ß-hexosaminidase confirms that AuNPs are excreted through lysosomes. Mechanistic studies reveal that lncRNA ESCCAL-1 plays a vital role in controlling the exocytosis of AuNPs through activation of the MAPK pathway, including the phosphorylation of ERK and JNK. The study implies that the ESCCAL-1-mediated pathway plays an important role in the exocytosis of AuNPs in KYSE70 cells. This finding has implications for the role of ESCCAL-1 on the drug resistance of esophagus cancer by controlling lysosome-mediated exocytosis.

11.
J Athl Train ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775129

RESUMO

CONTEXT: Structural evidence for corticospinal tract (CST) abnormality between patients with ACLR and healthy controls, and the relationships between CST structure and clinical features of the patients (e.g., objective sensorimotor outcomes, postoperative duration) are lacking. OBJECTIVES: To investigate whether the structural features of CST 1) differ between patients with ACLR and healthy controls, and 2) were associated with clinical features in patients following ACLR. DESIGN: Cross-sectional study. SETTING: Sports medicine laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty-six patients who had undergone ACLR and twenty-six healthy controls were enrolled in this cross-sectional investigation. MAIN OUTCOME MEASURE(S): Using the CST as the region of interest, we performed diffusion tensor imaging to measure the microstructure of white matter tracts. Between-group comparisons and correlation analyses with clinical features in patients with ACLR were performed. RESULTS: The patients with ACLR showed significant, moderate lower fractional anisotropy (FA, Cohen's d = -0.666, 95% CIs -1.221 to -0.104), lower axial diffusivity (AD, Cohen's d = -0.526, 95% CIs -1.077 to 0.030), and higher radial diffusivity (RD, Cohen's d = 0.514, 95% CIs -0.042 to 1.064) when compared to that of healthy controls, with the RD values being significantly correlated with the postoperative duration (r = 0.623, p < 0.001) after controlling the age, sex, and BMI in patients with ACLR. CONCLUSIONS: This study revealed that patients with ACLR have impaired integrity (lower FA values and higher RD values) in the CST contralateral to the ACLR injured limb in comparison with healthy controls. Decreased integrity (higher RD) of the CST in patients was significantly associated with longer postoperative duration, which hinted that impaired structural integrity of the CST may be a maladaptive process of neuroplasticity in ACLR.

12.
Biophys Rep ; 10(1): 1-14, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38737473

RESUMO

The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.

13.
NAR Genom Bioinform ; 6(2): lqae044, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711860

RESUMO

Sequence classification facilitates a fundamental understanding of the structure of microbial communities. Binary metagenomic sequence classifiers are insufficient because environmental metagenomes are typically derived from multiple sequence sources. Here we introduce a deep-learning based sequence classifier, DeepMicroClass, that classifies metagenomic contigs into five sequence classes, i.e. viruses infecting prokaryotic or eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. DeepMicroClass achieved high performance for all sequence classes at various tested sequence lengths ranging from 500 bp to 100 kbps. By benchmarking on a synthetic dataset with variable sequence class composition, we showed that DeepMicroClass obtained better performance for eukaryotic, plasmid and viral contig classification than other state-of-the-art predictors. DeepMicroClass achieved comparable performance on viral sequence classification with geNomad and VirSorter2 when benchmarked on the CAMI II marine dataset. Using a coastal daily time-series metagenomic dataset as a case study, we showed that microbial eukaryotes and prokaryotic viruses are integral to microbial communities. By analyzing monthly metagenomes collected at HOT and BATS, we found relatively higher viral read proportions in the subsurface layer in late summer, consistent with the seasonal viral infection patterns prevalent in these areas. We expect DeepMicroClass will promote metagenomic studies of under-appreciated sequence types.

14.
Cell Mol Immunol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720063

RESUMO

Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in infection and inflammatory diseases by facilitating the formation of neutrophil extracellular traps (NETs). However, the substrates of PAD4 and its exact role in inflammatory bowel disease (IBD) remain unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) and substrate citrullination mapping to decipher the role of PAD4 in intestinal inflammation associated with IBD. Our results demonstrated that PAD4 deficiency alleviated colonic inflammation and restored intestinal barrier function in a dextran sulfate sodium (DSS)-induced colitis mouse model. scRNA-seq analysis revealed significant alterations in intestinal cell populations, with reduced neutrophil numbers and changes in epithelial subsets upon PAD4 deletion. Gene expression analysis highlighted pathways related to inflammation and epithelial cell function. Furthermore, we found that neutrophil-derived extracellular vesicles (EVs) carrying PAD4 were secreted into intestinal epithelial cells (IECs). Within IECs, PAD4 citrullinates mitochondrial creatine kinase 1 (CKMT1) at the R242 site, leading to reduced CKMT1 protein stability via the autophagy pathway. This action compromises mitochondrial homeostasis, impairs intestinal barrier integrity, and induces IECs apoptosis. IEC-specific depletion of CKMT1 exacerbated intestinal inflammation and apoptosis in mice with colitis. Clinical analysis of IBD patients revealed elevated levels of PAD4, increased CKMT1 citrullination, and decreased CKMT1 expression. In summary, our findings highlight the crucial role of PAD4 in IBD, where it modulates IECs plasticity via CKMT1 citrullination, suggesting that PAD4 may be a potential therapeutic target for IBD.

16.
Small ; : e2400760, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566543

RESUMO

Industrial-level hydrogen production from the water electrolysis requires reducing the overpotential (η) as much as possible at high current density, which is closely related to intrinsic activity of the electrocatalysts. Herein, A-site cation deficiency engineering is proposed to screen high-performance catalysts, demonstrating effective Pr0.5- xLa0.5BaCo2O5+ δ (P0.5- xLBC) perovskites toward alkaline hydrogen evolution reaction (HER). Among all perovskite compositions, Pr0.4La0.5BaCo2O5+ δ (P0.4LBC) exhibits superior HER performance along with unique operating stability at large current densities (J = 500-2000 mA cm-2 geo). The overpotential of ≈636 mV is achieved in P0.4LBC at 2000 mA cm-2 geo, which outperforms commercial Pt/C benchmark (≈974 mV). Furthermore, the Tafel slope of P0.4LBC (34.1 mV dec-1) is close to that of Pt/C (35.6 mV dec-1), reflecting fast HER kinetics on the P0.4LBC catalyst. Combined with experimental and theoretical results, such catalytic activity may benefit from enhanced electrical conductivity, enlarged Co-O covalency, and decreased desorption energy of H* species. This results highlight effective A-site cation-deficient strategy for promoting electrochemical properties of perovskites, highlighting potential water electrolysis at ampere-level current density.

17.
Biomed Rep ; 20(5): 82, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628627

RESUMO

Dihydromyricetin (DHM) is a natural flavonoid compound with multiple antitumour effects, including inhibition of proliferation, promotion of apoptosis, inhibition of invasion and migration, clearance of reactive oxygen species (ROS) and induction of autophagy. For example, DHM can effectively block the progression of the tumour cell cycle and inhibit cell proliferation. In different types of cancer cells, DHM can regulate the PI3K/Akt pathway, mTOR, and NF-κB pathway components, such as p53, and endoplasmic reticulum stress can alter the accumulation of ROS or induce autophagy to promote the apoptosis of tumour cells. In addition, when DHM is used in combination with various known chemotherapy drugs, such as paclitaxel, nedaplatin, doxorubicin, oxaliplatin and vinblastine, it can increase the sensitivity of tumour cells to DHM and increase the therapeutic effect of chemotherapy drugs. In the present review, the multiple molecular and cellular mechanisms underlying the antitumour effect of DHM, as well as its ability to increase the effects of various traditional antitumour drugs were summarized. Through the present review, it is expected by the authors to draw attention to the potential of DHM as an antitumour drug and provide valuable references for the clinical translation of DHM research and the development of related treatment strategies.

18.
Nano Lett ; 24(15): 4408-4414, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567928

RESUMO

Tuning the interfacial Schottky barrier with van der Waals (vdW) contacts is an important solution for two-dimensional (2D) electronics. Here we report that the interlayer dipoles of 2D vdW superlattices (vdWSLs) can be used to engineer vdW contacts to 2D semiconductors. A bipolar WSe2 with Ba6Ta11S28 (BTS) vdW contact was employed to exhibit this strategy. Strong interlayer dipoles can be formed due to charge transfer between the Ba3TaS5 and TaS2 layers. Mechanical exfoliation breaks the superlattice and produces two distinguished surfaces with TaS2 and Ba3TaS5 terminations. The surfaces thus have opposite surface dipoles and consequently different work functions. Therefore, all the devices fall into two categories in accordance with the rectifying direction, which were verified by electrical measurements and scanning photocurrent microscopy. The growing vdWSL family along with the addition surface dipoles enables prospective vdW contact designs and have practical application in nanoelectronics and nano optoelectronics.

19.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 179-183, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605618

RESUMO

Objective: To introduce a locating device for the entry point of intramedullary nail based on the inertial navigation technology, which utilizes multi-dimensional angle information to assist in rapid and accurate positioning of the ideal direction of femoral anterograde intramedullary nails' entry point, and to verify its clinical value through clinical tests. Methods: After matching the locating module with the developing board, which are the two components of the locating device, they were placed on the skin surface of the proximal femur of the affected side. Anteroposterior fluoroscopy was performed. The developing angle corresponding to the ideal direction of entry point was selected based on the X-ray image, and then the yaw angle of the locating module was reset to zero. After resetting, the locating module was combined with the surgical instrument to guide the insertion angle of the guide wire. The ideal direction of entry point was accurately located based on the angle guidance. By setting up an experimental group and a control group for clinical surgical operations, the number of guide wire insertion times, surgical time, fluoroscopy frequency, and intraoperative blood loss with or without the locating device was recorded. Results: Compared to the control group, the experimental group showed significant improvement in the number of guide wire insertion times, surgical time, fluoroscopy frequency, and intraoperative blood loss, with a statistically significant difference (P<0.01). Conclusion: The locating device can assist doctors in quickly locating the entry point of intramedullary nail, effectively reducing the fluoroscopy frequency and surgical time by improving the success rate of the guide wire insertion with one shot, improving surgical efficiency, and possessing certain clinical value.


Assuntos
Fixação Intramedular de Fraturas , Cirurgia Assistida por Computador , Humanos , Pinos Ortopédicos , Perda Sanguínea Cirúrgica , Fluoroscopia/métodos , Fixação Intramedular de Fraturas/métodos , Cirurgia Assistida por Computador/métodos
20.
Cell Insight ; 3(3): 100163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572176

RESUMO

Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...