Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 217(4): 538-547, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28968863

RESUMO

Background: While Zika virus (ZIKV) is mainly transmitted by mosquitoes, numerous cases of sexual transmission have been reported during recent outbreaks. Little is known about which host cell types or entry factors aid in mediating this sexual transmission. Methods: In this study, we investigated ZIKV cell tropism by infecting 2 types of human prostate cells with 3 contemporary ZIKV isolates from persons infected in the Americas. We used real-time quantitative polymerase chain reaction and immunofluorescence analyses to measure infection and flow cytometry to detect entry factor expression. Results: Here we show that ZIKV infects, replicates, and produces infectious virus in prostate stromal mesenchymal stem cells, epithelial cells, and organoids made with a combination of these cells. We also show that prostate cells express several well-characterized flavivirus attachment factors. In contrast, dengue virus does not infect or does not replicate in these prostate cells, although it is known to use similar receptors. Conclusions: Our results indicate that ZIKV favors infection of stromal cells more so than epithelial cells in organoids, possibly indicating a preference for stem cells in general. Overall, these results suggest that ZIKV replication occurs in the human prostate and can account for ZIKV secretion in semen, thus leading to sexual transmission.


Assuntos
Células Epiteliais/virologia , Células-Tronco Mesenquimais/virologia , Próstata/virologia , Tropismo Viral , Replicação Viral , Zika virus/fisiologia , América , Citometria de Fluxo , Humanos , Masculino , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Cultura de Vírus , Zika virus/isolamento & purificação , Infecção por Zika virus/virologia
2.
Genome Announc ; 1(3)2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23682139

RESUMO

The whole-genome shotgun sequence of Rhodococcus ruber strain Chol-4 is presented here. This organism was shown to be able to grow using many steroids as the sole carbon and energy sources. These sequence data will help us to further explore the metabolic abilities of this versatile degrader.

3.
Biosystems ; 105(2): 169-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554926

RESUMO

Tools-4-Metatool (T4M) is a suite of web-tools, implemented in PERL, which analyses, parses, and manipulates files related to Metatool. Its main goal is to assist the work with Metatool. T4M has two major sets of tools: Analysis and Compare. Analysis visualizes the results of Metatool (convex basis, elementary flux modes, and enzyme subsets) and facilitates the study of metabolic networks. It is composed of five tools: MDigraph, MetaMatrix, CBGraph, EMGraph, and SortEM. Compare was developed to compare different Metatool results from different networks. This set consists of: Compara and ComparaSub which compare network subsets providing outputs in different formats and ComparaEM that seeks for identical elementary modes in two metabolic networks. The suite T4M also includes one script that generates Metatool input: CBasis2Metatool, based on a Metatool output file that is filtered by a list of convex basis' metabolites. Finally, the utility CheckMIn checks the consistency of the Metatool input file. T4M is available at http://solea.quim.ucm.es/t4m.


Assuntos
Buchnera/metabolismo , Redes e Vias Metabólicas , Software , Biologia de Sistemas/métodos , Valina/biossíntese , Algoritmos , Simulação por Computador , Genoma , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...