Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205083

RESUMO

The larval stage is highly prone to stress due to the ontogenetic and metabolic alterations occurring in fish. Curcumin inclusion in diets has been shown to improve growth by modulating oxidative status, immune response, and/or feed digestibility in several fish species. The aim of the present work was to assess if dietary curcumin could promote marine fish larvae digestive maturation and improve robustness. Gilthead seabream larvae were fed a diet supplemented with curcumin at dose of 0 (CTRL), 1.5 (LOW), or 3.0 g/Kg feed for 27 days. From 4 to 24 days after hatching (DAH), no differences were observed in growth performance. At the end of the experiment (31 DAH) LOW larvae had a better condition factor than CTRL fish. Moreover, HIGH larvae showed higher trypsin and chymotrypsin activity when compared to CTRL fish. LOW and HIGH larvae were able to maintain the mitochondrial reactive oxygen species production during development, in contrast to CTRL larvae. In conclusion, curcumin supplementation seems to promote larvae digestive capacity and modulate the oxidative status during ontogeny. Furthermore, the present results provide new insights on the impacts of dietary antioxidants on marine larvae development and a possible improvement of robustness in the short and long term.

2.
Animals (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068939

RESUMO

Plant extracts are known for their high content and diversity of polyphenols, which can improve fish oxidative status. A growth trial with Senegalese sole postlarvae (45 days after hatching) fed with one of four experimental diets-control (CTRL), and supplemented with curcumin (CC), green tea (GT), and grape seed (GS) extracts-was performed to assess if supplementation could improve growth performance and oxidative status. At the end of the growth trial, postlarvae were submitted to a thermal stress to assess their robustness. Sole growth was improved by CC and GS diets when compared to those fed the CTRL. CC and CTRL postlarvae presented the lowest oxidative damage (lipid peroxidation and protein carbonylation values). Stress-related biomarkers (heat shock protein 70 and glutathione-S-transferase) decreased in CC fish compared to those fed the CTRL diet, which might be due to a direct antioxidant capacity. In contrast, oxidative damage increased in GT and GS sole reared in standard conditions. However, after a thermal stress, GT and GS diets prevented the increase of protein carbonylation content and the decrease of antioxidant glutathione, depending on exposure time. Overall, dietary supplementation with natural extracts modulated oxidative status and stress response after a short/long-term exposure to temperature.

3.
Front Physiol ; 11: 580600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281617

RESUMO

Somatic growth is a balance between protein synthesis and degradation, and it is largely influenced by nutritional clues. Antioxidants levels play a key role in protein turnover by reducing the oxidative damage in the skeletal muscle, and hence promoting growth performance in the long-term. In the present study, Senegalese sole postlarvae (45 days after hatching, DAH) were fed with three experimental diets, a control (CTRL) and two supplemented with natural antioxidants: curcumin (CC) and grape seed (GS). Trial spanned for 25 days and growth performance, muscle cellularity and the expression of muscle growth related genes were assessed at the end of the experiment (70 DAH). The diets CC and GS significantly improved growth performance of fish compared to the CTRL diet. This enhanced growth was associated with larger muscle cross sectional area, with fish fed CC being significantly different from those fed the CTRL. Sole fed the CC diet had the highest number of muscle fibers, indicating that this diet promoted muscle hyperplastic growth. Although the mean fiber diameter did not differ significantly amongst treatments, the proportion of large-sized fibers (>25 µm) was also higher in fish fed the CC diet suggesting increased hypertrophic growth. Such differences in the phenotype were associated with a significant up-regulation of the myogenic differentiation 2 (myod2) and the myomaker (mymk) transcripts involved in myocyte differentiation and fusion, respectively, during larval development. The inclusion of grape seed extract (GS diet) resulted in a significant increase in the expression of myostatin1. These results demonstrate that both diets (CC and GS) can positively modulate muscle development and promote growth in sole postlarvae. This effect is more prominent in CC fed fish, where increased hyperplastic and hypertrophic growth of the muscle was associated with an upregulation of myod2 and mymk genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...