Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0257537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34547052

RESUMO

CRISPR base editors are powerful tools for large-scale mutagenesis studies. This kind of approach can elucidate the mechanism of action of compounds, a key process in drug discovery. Here, we explore the utility of base editors in an early drug discovery context focusing on G-protein coupled receptors. A pooled mutagenesis screening framework was set up based on a modified version of the CRISPR-X base editor system. We determine optimized experimental conditions for mutagenesis where sgRNAs are delivered by cell transfection or viral infection over extended time periods (>14 days), resulting in high mutagenesis produced in a short region located at -4/+8 nucleotides with respect to the sgRNA match. The ß2 Adrenergic Receptor (B2AR) was targeted in this way employing a 6xCRE-mCherry reporter system to monitor its response to isoproterenol. The results of our screening indicate that residue 184 of B2AR is crucial for its activation. Based on our experience, we outline the crucial points to consider when designing and performing CRISPR-based pooled mutagenesis screening, including the typical technical hurdles encountered when studying compound pharmacology.


Assuntos
Edição de Genes/métodos , Isoproterenol/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sistemas CRISPR-Cas/genética , Genes Reporter , Células HEK293 , Humanos , Isoproterenol/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética
2.
Sci Rep ; 11(1): 2879, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536571

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease with poor prognosis. New options for drug discovery targets are needed. We developed an imaging based arrayed CRISPR method to interrogate the human genome for modulation of in vitro correlates of AD features, and used this to assess 1525 human genes related to tau aggregation, autophagy and mitochondria. This work revealed (I) a network of tau aggregation modulators including the NF-κB pathway and inflammatory signaling, (II) a correlation between mitochondrial morphology, respiratory function and transcriptomics, (III) machine learning predicted novel roles of genes and pathways in autophagic processes and (IV) individual gene function inferences and interactions among biological processes via multi-feature clustering. These studies provide a platform to interrogate underexplored aspects of AD biology and offer several specific hypotheses for future drug discovery efforts.


Assuntos
Doença de Alzheimer/genética , Autofagia/genética , Modelos Genéticos , Agregação Patológica de Proteínas/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Engenharia Genética , Humanos , Aprendizado de Máquina , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios , Agregação Patológica de Proteínas/patologia , Transdução de Sinais/genética
3.
PLoS One ; 16(1): e0238753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481821

RESUMO

PFRED a software application for the design, analysis, and visualization of antisense oligonucleotides and siRNA is described. The software provides an intuitive user-interface for scientists to design a library of siRNA or antisense oligonucleotides that target a specific gene of interest. Moreover, the tool facilitates the incorporation of various design criteria that have been shown to be important for stability and potency. PFRED has been made available as an open-source project so the code can be easily modified to address the future needs of the oligonucleotide research community. A compiled version is available for downloading at https://github.com/pfred/pfred-gui/releases/tag/v1.0 as a java Jar file. The source code and the links for downloading the precompiled version can be found at https://github.com/pfred.


Assuntos
Biologia Computacional/métodos , Primers do DNA/genética , Oligonucleotídeos Antissenso/genética , Algoritmos , Biblioteca Gênica , Genômica , Oligonucleotídeos/genética , RNA Interferente Pequeno/genética , Software , Interface Usuário-Computador
4.
Nat Neurosci ; 23(11): 1352-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33097921

RESUMO

The mechanisms by which prenatal immune activation increase the risk for neuropsychiatric disorders are unclear. Here, we generated developmental cortical interneurons (cINs)-which are known to be affected in schizophrenia (SCZ) when matured-from induced pluripotent stem cells (iPSCs) derived from healthy controls (HCs) and individuals with SCZ and co-cultured them with or without activated microglia. Co-culture with activated microglia disturbed metabolic pathways, as indicated by unbiased transcriptome analyses, and impaired mitochondrial function, arborization, synapse formation and synaptic GABA release. Deficits in mitochondrial function and arborization were reversed by alpha lipoic acid and acetyl-L-carnitine treatments, which boost mitochondrial function. Notably, activated-microglia-conditioned medium altered metabolism in cINs and iPSCs from HCs but not in iPSCs from individuals with SCZ or in glutamatergic neurons. After removal of activated-microglia-conditioned medium, SCZ cINs but not HC cINs showed prolonged metabolic deficits, which suggests that there is an interaction between SCZ genetic backgrounds and environmental risk factors.


Assuntos
Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Microglia/metabolismo , Esquizofrenia/metabolismo , Adulto , Técnicas de Cocultura , Encefalite/metabolismo , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
5.
Science ; 369(6509)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913075

RESUMO

The Genotype-Tissue Expression (GTEx) project has identified expression and splicing quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues. However, the functional characterization of these QTLs has been limited by the heterogeneous cellular composition of GTEx tissue samples. We mapped interactions between computational estimates of cell type abundance and genotype to identify cell type-interaction QTLs for seven cell types and show that cell type-interaction expression QTLs (eQTLs) provide finer resolution to tissue specificity than bulk tissue cis-eQTLs. Analyses of genetic associations with 87 complex traits show a contribution from cell type-interaction QTLs and enables the discovery of hundreds of previously unidentified colocalized loci that are masked in bulk tissue.


Assuntos
Regulação da Expressão Gênica , Locos de Características Quantitativas , Transcriptoma , Células/metabolismo , Humanos , Especificidade de Órgãos , RNA Longo não Codificante/genética
6.
PLoS One ; 15(6): e0233895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497062

RESUMO

Deficits in fast-spiking inhibitory interneurons (FSINs) within the dorsolateral prefrontal cortex (dlPFC) are hypothesized to underlie cognitive impairment associated with schizophrenia. Though representing a minority of interneurons, this key cell type coordinates broad neural network gamma-frequency oscillations, associated with cognition and cognitive flexibility. Here we report expression of GluN2D mRNA selectively in parvalbumin positive cells of human postmortem dlPFC tissue, but not pyramidal neurons, with little to no GluN2C expression in either cell type. In acute murine mPFC slices the GluN2C/D selective positive allosteric modulator (PAM), CIQ(+), increased the intrinsic excitability as well as enhanced NMDAR-mediated EPSCs onto FSINs. This increase in intrinsic excitability with GluN2C/D PAM was also observed in the Dlx 5/6+/- FSIN developmental deficit model with reported FSIN hypoexcitability. Together these data speak to selective modulation of FSINs by a GluN2D PAM, providing a potential mechanism to counter the FSIN-deficit seen in schizophrenia.


Assuntos
Interneurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação , Adulto , Animais , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibição Neural , Células Piramidais/metabolismo , RNA Mensageiro/genética , Receptores de N-Metil-D-Aspartato/genética
7.
BMC Genomics ; 21(1): 64, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959126

RESUMO

BACKGROUND: The advent of Next Generation Sequencing has allowed transcriptomes to be profiled with unprecedented accuracy, but the high costs of full-length mRNA sequencing have posed a limit on the accessibility and scalability of the technology. To address this, we developed 3'Pool-seq: a simple, cost-effective, and scalable RNA-seq method that focuses sequencing to the 3'-end of mRNA. We drew from aspects of SMART-seq, Drop-seq, and TruSeq to implement an easy workflow, and optimized parameters such as input RNA concentrations, tagmentation conditions, and read depth specifically for bulk-RNA. RESULTS: Thorough optimization resulted in a protocol that takes less than 12 h to perform, does not require custom sequencing primers or instrumentation, and cuts over 90% of the costs associated with TruSeq, while still achieving accurate gene expression quantification (Pearson's correlation coefficient with ERCC theoretical concentration r = 0.96) and differential gene detection (ROC analysis of 3'Pool-seq compared to TruSeq AUC = 0.921). The 3'Pool-seq dual indexing scheme was further adapted for a 96-well plate format, and ERCC spike-ins were used to correct for potential row or column pooling effects. Transcriptional profiling of troglitazone and pioglitazone treatments at multiple doses and time points in HepG2 cells was then used to show how 3'Pool-seq could distinguish the two molecules based on their molecular signatures. CONCLUSIONS: 3'Pool-seq can accurately detect gene expression at a level that is on par with TruSeq, at one tenth of the total cost. Furthermore, its unprecedented TruSeq/Nextera hybrid indexing scheme and streamlined workflow can be applied in several different formats, including 96-well plates, which allows users to thoroughly evaluate biological systems under several conditions and timepoints. Care must be taken regarding experimental design and plate layout such that potential pooling effects can be accounted for and corrected. Lastly, further studies using multiple sets of ERCC spike-ins may be used to simulate differential gene expression in a system with known ground-state values.


Assuntos
RNA-Seq/métodos , Animais , Análise Custo-Benefício , Células Hep G2 , Humanos , Camundongos , Pioglitazona/farmacologia , RNA-Seq/economia , Transcriptoma/efeitos dos fármacos , Troglitazona/farmacologia
8.
Nat Neurosci ; 22(2): 229-242, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664768

RESUMO

We generated cortical interneurons (cINs) from induced pluripotent stem cells derived from 14 healthy controls and 14 subjects with schizophrenia. Both healthy control cINs and schizophrenia cINs were authentic, fired spontaneously, received functional excitatory inputs from host neurons, and induced GABA-mediated inhibition in host neurons in vivo. However, schizophrenia cINs had dysregulated expression of protocadherin genes, which lie within documented schizophrenia loci. Mice lacking protocadherin-α showed defective arborization and synaptic density of prefrontal cortex cINs and behavioral abnormalities. Schizophrenia cINs similarly showed defects in synaptic density and arborization that were reversed by inhibitors of protein kinase C, a downstream kinase in the protocadherin pathway. These findings reveal an intrinsic abnormality in schizophrenia cINs in the absence of any circuit-driven pathology. They also demonstrate the utility of homogenous and functional populations of a relevant neuronal subtype for probing pathogenesis mechanisms during development.


Assuntos
Caderinas/metabolismo , Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Animais , Caderinas/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Interneurônios/patologia , Masculino , Camundongos , Camundongos Knockout , Córtex Pré-Frontal/patologia , Protocaderinas , Esquizofrenia/patologia , Sinapses/genética , Sinapses/metabolismo
9.
Nat Neurosci ; 21(8): 1117-1125, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30050107

RESUMO

Genome-wide association studies have identified 108 schizophrenia risk loci, but biological mechanisms for individual loci are largely unknown. Using developmental, genetic and illness-based RNA sequencing expression analysis in human brain, we characterized the human brain transcriptome around these loci and found enrichment for developmentally regulated genes with novel examples of shifting isoform usage across pre- and postnatal life. We found widespread expression quantitative trait loci (eQTLs), including many with transcript specificity and previously unannotated sequence that were independently replicated. We leveraged this general eQTL database to show that 48.1% of risk variants for schizophrenia associate with nearby expression. We lastly found 237 genes significantly differentially expressed between patients and controls, which replicated in an independent dataset, implicated synaptic processes, and were strongly regulated in early development. These findings together offer genetics- and diagnosis-related targets for better modeling of schizophrenia risk. This resource is publicly available at http://eqtl.brainseq.org/phase1 .


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Transcriptoma/genética , Adolescente , Adulto , Autopsia , Criança , Pré-Escolar , Doença Crônica , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de RNA
10.
Hum Mol Genet ; 27(18): 3206-3217, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29901742

RESUMO

Rare monogenic diseases affect millions worldwide; although over 4500 rare disease genotypes are known, disease-modifying drugs are available for only 5% of them. The sheer number of these conditions combined with their rarity precludes traditional costly drug discovery programs. An economically viable alternative is to repurpose established drugs for rare diseases. Many genetic diseases result from increased or decreased protein activity and identification of clinically approved drugs which moderate this pathogenic dosage holds therapeutic potential. To identify such agents for neurogenetic diseases, we have generated genome-wide transcriptome profiles of mouse primary cerebrocortical cultures grown in the presence of 218 blood-brain barrier (BBB) penetrant clinic-tested drugs. RNAseq and differential expression analyses were used to generate transcriptomic profiles; therapeutically relevant drug-gene interactions related to rare neurogenetic diseases identified in this fashion were further analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. We have created a transcriptome-wide searchable database for easy access to the gene expression data resulting from the cerebrocortical drug screen (Neuron Screen) and have mined this data to identify a novel link between thyroid hormone and expression of the peripheral neuropathy associated gene Pmp22. Our results demonstrate the utility of cerebrocortical cultures for transcriptomic drug screening, and the database we have created will foster further discovery of novel links between over 200 clinic-tested BBB penetrant drugs and genes related to diverse neurologic conditions.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Transcriptoma/genética , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Córtex Cerebral/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Doenças do Sistema Nervoso Periférico/patologia
11.
Nat Genet ; 50(7): 956-967, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29955180

RESUMO

We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis-eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40-80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU.


Assuntos
Doença/genética , Regulação da Expressão Gênica , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
12.
J Neuroinflammation ; 15(1): 142, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29759062

RESUMO

BACKGROUND: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. METHODS: Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. RESULTS: Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. CONCLUSIONS: Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.


Assuntos
Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Permeabilidade Capilar/fisiologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Permeabilidade Capilar/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hidrólise/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo
13.
J Clin Invest ; 128(1): 294-308, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202482

RESUMO

Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Fator 6 de Diferenciação de Crescimento/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular Tumoral , Feminino , Fator 6 de Diferenciação de Crescimento/genética , Células HEK293 , Humanos , Ligantes , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas de Neoplasias/genética
14.
ACS Infect Dis ; 2(3): 180-186, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26998514

RESUMO

A kinase-targeting cell-based high-throughput screen (HTS) against Trypanosoma brucei was recently reported, and this screening set included the Published Kinase Inhibitor Set (PKIS). From the PKIS was identified 53 compounds with pEC50 ≥ 6. Utilizing the published data available for the PKIS, a statistical analysis of these active antiparasitic compounds was performed, allowing identification of a set of human kinases having inhibitors that show a high likelihood for blocking T. brucei cellular proliferation in vitro. This observation was confirmed by testing other established inhibitors of these human kinases and by mining past screening campaigns at GlaxoSmithKline. Overall, although the parasite targets of action are not known, inhibitors of this set of human kinases displayed an enhanced hit rate relative to a random kinase-targeting HTS campaign, suggesting that repurposing efforts should focus primarily on inhibitors of these specific human kinases. We therefore term this statistical analysis-driven approach "preferred lead repurposing".

15.
BMC Genomics ; 17: 39, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26747388

RESUMO

BACKGROUND: RNA sequencing (RNA-seq), a next-generation sequencing technique for transcriptome profiling, is being increasingly used, in part driven by the decreasing cost of sequencing. Nevertheless, the analysis of the massive amounts of data generated by large-scale RNA-seq remains a challenge. Multiple algorithms pertinent to basic analyses have been developed, and there is an increasing need to automate the use of these tools so as to obtain results in an efficient and user friendly manner. Increased automation and improved visualization of the results will help make the results and findings of the analyses readily available to experimental scientists. RESULTS: By combing the best open source tools developed for RNA-seq data analyses and the most advanced web 2.0 technologies, we have implemented QuickRNASeq, a pipeline for large-scale RNA-seq data analyses and visualization. The QuickRNASeq workflow consists of three main steps. In Step #1, each individual sample is processed, including mapping RNA-seq reads to a reference genome, counting the numbers of mapped reads, quality control of the aligned reads, and SNP (single nucleotide polymorphism) calling. Step #1 is computationally intensive, and can be processed in parallel. In Step #2, the results from individual samples are merged, and an integrated and interactive project report is generated. All analyses results in the report are accessible via a single HTML entry webpage. Step #3 is the data interpretation and presentation step. The rich visualization features implemented here allow end users to interactively explore the results of RNA-seq data analyses, and to gain more insights into RNA-seq datasets. In addition, we used a real world dataset to demonstrate the simplicity and efficiency of QuickRNASeq in RNA-seq data analyses and interactive visualizations. The seamless integration of automated capabilites with interactive visualizations in QuickRNASeq is not available in other published RNA-seq pipelines. CONCLUSION: The high degree of automation and interactivity in QuickRNASeq leads to a substantial reduction in the time and effort required prior to further downstream analyses and interpretation of the analyses findings. QuickRNASeq advances primary RNA-seq data analyses to the next level of automation, and is mature for public release and adoption.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Software , Transcriptoma/genética , Algoritmos , Sequência de Bases , RNA/genética
16.
BMC Genomics ; 16: 675, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334759

RESUMO

BACKGROUND: While RNA-sequencing (RNA-seq) is becoming a powerful technology in transcriptome profiling, one significant shortcoming of the first-generation RNA-seq protocol is that it does not retain the strand specificity of origin for each transcript. Without strand information it is difficult and sometimes impossible to accurately quantify gene expression levels for genes with overlapping genomic loci that are transcribed from opposite strands. It has recently become possible to retain the strand information by modifying the RNA-seq protocol, known as strand-specific or stranded RNA-seq. Here, we evaluated the advantages of stranded RNA-seq in transcriptome profiling of whole blood RNA samples compared with non-stranded RNA-seq, and investigated the influence of gene overlaps on gene expression profiling results based on practical RNA-seq datasets and also from a theoretical perspective. RESULTS: Our results demonstrated a substantial impact of stranded RNA-seq on transcriptome profiling and gene expression measurements. As many as 1751 genes in Gencode Release 19 were identified to be differentially expressed when comparing stranded and non-stranded RNA-seq whole blood samples. Antisense and pseudogenes were significantly enriched in differential expression analyses. Because stranded RNA-seq retains strand information of a read, we can resolve read ambiguity in overlapping genes transcribed from opposite strands, which provides a more accurate quantification of gene expression levels compared with traditional non-stranded RNA-seq. In the human genome, it is not uncommon to find genomic loci where both strands encode distinct genes. Among the over 57,800 annotated genes in Gencode release 19, there are an estimated 19 % (about 11,000) of overlapping genes transcribed from the opposite strands. Based on our whole blood mRNA-seq datasets, the fraction of overlapping nucleotide bases on the same and opposite strands were estimated at 2.94 % and 3.1 %, respectively. The corresponding theoretical estimations are 3 % and 3.6 %, well in agreement with our own findings. CONCLUSIONS: Stranded RNA-seq provides a more accurate estimate of transcript expression compared with non-stranded RNA-seq, and is therefore the recommended RNA-seq approach for future mRNA-seq studies.


Assuntos
Perfilação da Expressão Gênica , Genes , Análise de Sequência de RNA/métodos , Moléculas de Adesão Celular/genética , Humanos , Interleucinas/genética , Masculino , Reprodutibilidade dos Testes
17.
Hum Mol Genet ; 24(12): 3557-70, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25762156

RESUMO

The CD33 single-nucleotide polymorphism (SNP) rs3865444 has been associated with the risk of Alzheimer's disease (AD). Rs3865444 is in linkage disequilibrium with rs12459419 which has been associated with efficacy of an acute myeloid leukemia (AML) chemotherapeutic agent based on a CD33 antibody. We seek to evaluate the extent to which CD33 genetics in AD and AML can inform one another and advance human disease therapy. We have previously shown that these SNPs are associated with skipping of CD33 exon 2 in brain mRNA. Here, we report that these CD33 SNPs are associated with exon 2 skipping in leukocytes from AML patients and with a novel CD33 splice variant that retains CD33 intron 1. Each copy of the minor rs12459419T allele decreases prototypic full-length CD33 expression by ∼ 25% and decreases the AD odds ratio by ∼ 0.10. These results suggest that CD33 antagonists may be useful in reducing AD risk. CD33 inhibitors may include humanized CD33 antibodies such as lintuzumab which was safe but ineffective in AML clinical trials. Here, we report that lintuzumab downregulates cell-surface CD33 by 80% in phorbol-ester differentiated U937 cells, at concentrations as low as 10 ng/ml. Overall, we propose a model wherein a modest effect on RNA splicing is sufficient to mediate the CD33 association with AD risk and suggest the potential for an anti-CD33 antibody as an AD-relevant pharmacologic agent.


Assuntos
Doença de Alzheimer/genética , Estudos de Associação Genética , Leucemia Mieloide Aguda/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Processamento Alternativo , Doença de Alzheimer/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular , Éxons , Feminino , Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Íntrons , Leucemia Mieloide Aguda/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA , RNA Mensageiro/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
18.
Neuron ; 84(3): 537-41, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25442931

RESUMO

Human genetics is a rational starting point for target identification in drug discovery, yet this approach has found little application in neuroscience. Recent large-scale analyses have begun to identify robust genetic loci for schizophrenia, providing an opportunity to derive novel drug targets. Here, we summarize a strategy for applying human genetics to neuroscience drug discovery.


Assuntos
Descoberta de Drogas , Genética Médica , Esquizofrenia/genética , Esquizofrenia/terapia , Pesquisa Translacional Biomédica/métodos , Animais , Predisposição Genética para Doença , Humanos
19.
J Neurochem ; 128(4): 561-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117733

RESUMO

Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.


Assuntos
Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , Adenoviridae/genética , Animais , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CXCL10/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Camundongos , Camundongos Knockout , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Fosforilação , Plasmídeos/genética , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Titânio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
20.
J Neurosci ; 33(7): 2860-72, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407945

RESUMO

Dendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs. Chromatin immunoprecipitation analysis revealed that a central feature of this program was temporally regulated NFI occupancy of late-expressed gene promoters. Developing CGNs undergo a hyperpolarizing shift in membrane potential, and depolarization inhibits their dendritic and synaptic maturation via activation of calcineurin (CaN) (Okazawa et al., 2009). Maintaining immature CGNs in a depolarized state blocked NFI temporal occupancy of late-expressed genes and the NFI switch program via activation of the CaN/nuclear factor of activated T-cells, cytoplasmic (NFATc) pathway and promotion of late-gene occupancy by NFATc4, and these mechanisms inhibited dendritogenesis. Conversely, inhibition of the CaN/NFATc pathway in CGNs maturing under physiological nondepolarizing conditions upregulated the NFI switch program, NFI temporal occupancy, and dendrite formation. NFATc4 occupied the promoters of late-expressed NFI program genes in immature mouse cerebellum, and its binding was temporally downregulated with development. Further, NFI temporal binding and switch gene expression were upregulated in the developing cerebellum of Nfatc4 (-/-) mice. These findings define a novel NFI switch and temporal occupancy program that forms a critical link between membrane potential/CaN and dendritic maturation in CGNs. CaN inhibits the program and NFI occupancy in immature CGNs by promoting NFATc4 binding to late-expressed genes. As maturing CGNs become more hyperpolarized, NFATc4 binding declines leading to onset of NFI temporal binding and the NFI switch program.


Assuntos
Calcineurina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFI/fisiologia , Neurônios/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Diferenciação Celular , Linhagem Celular , Imunoprecipitação da Cromatina , Biologia Computacional , Citoplasma/metabolismo , Dendritos/fisiologia , Feminino , Imunofluorescência , Vetores Genéticos , Lentivirus/genética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Análise em Microsséries , Fatores de Transcrição NFI/biossíntese , Fatores de Transcrição NFI/genética , Plasmídeos/genética , Linfócitos T/metabolismo , Imagens com Corantes Sensíveis à Voltagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA