Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutat Res ; 616(1-2): 213-20, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17145065

RESUMO

Elucidating the relationship between polymorphic sequences and risk of common disease is a challenge. For example, although it is clear that variation in DNA repair genes is associated with familial cancer, aging and neurological disease, progress toward identifying polymorphisms associated with elevated risk of sporadic disease has been slow. This is partly due to the complexity of the genetic variation, the existence of large numbers of mostly low frequency variants and the contribution of many genes to variation in susceptibility. There has been limited development of methods to find associations between genotypes having many polymorphisms and pathway function or health outcome. We have explored several statistical methods for identifying polymorphisms associated with variation in DNA repair phenotypes. The model system used was 80 cell lines that had been resequenced to identify variation; 191 single nucleotide substitution polymorphisms (SNPs) are included, of which 172 are in 31 base excision repair pathway genes, 19 in 5 anti-oxidation genes, and DNA repair phenotypes based on single strand breaks measured by the alkaline Comet assay. Univariate analyses were of limited value in identifying SNPs associated with phenotype variation. Of the multivariable model selection methods tested: the easiest that provided reduced error of prediction of phenotype was simple counting of the variant alleles predicted to encode proteins with reduced activity, which led to a genotype including 52 SNPs; the best and most parsimonious model was achieved using a two-step analysis without regard to potential functional relevance: first SNPs were ranked by importance determined by random forests regression (RFR), followed by cross-validation in a second round of RFR modeling that included ever more SNPs in declining order of importance. With this approach six SNPs were found to minimize prediction error. The results should encourage research into utilization of multivariate analytical methods for epidemiological studies of the association of genetic variation in complex genotypes with risk of common diseases.


Assuntos
Reparo do DNA , Variação Genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Linhagem Celular , Quebras de DNA de Cadeia Simples , Predisposição Genética para Doença , Genótipo , Humanos , Análise Multivariada , Fenótipo , Medição de Risco
2.
Pharmacogenetics ; 14(8): 527-37, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15284535

RESUMO

CYP2C9 is a clinically important enzyme, responsible for the metabolism of numerous clinically important therapeutic drugs. In the present study, we discovered 38 single nucleotide polymorphisms in CYP2C9 by resequencing of genomic DNA from 92 individuals from three different racial groups. Haplotype analysis predicted that there are at least 21 alleles of CYP2C9 in this group of individuals. Six new alleles were identified that contained coding changes: L19I (CYP2C9*7), R150H (CYP2C9*8), H251R (CYP2C9*9), E272G (CYP2C9*10), R335W(CYP2C9*11) and P489S (CYP2C9*12). When expressed in a bacterial cDNA expression system, several alleles exhibited altered catalytic activity. CYP2C9*11 appeared to be a putative poor metabolizer allele, exhibiting a three-fold increase in the Km and more than a two-fold decrease in the intrinsic clearance for tolbutamide. Examination of the crystal structure of human CYP2C9 reveals that R335 is located in the turn between the J and J' helices and forms a hydrogen-bonding ion pair with D341 from the J' helix. Abolishing this interaction in CYP2C9*11 individuals could destabilize the secondary structure and alter the substrate affinity. This new putative poor metabolizer (PM) allele was found in Africans. A second potentially PM allele CYP2C9*12 found in a racially unidentified sample also exhibited a modest decrease in the Vmax and the intrinsic clearance for tolbutamide in a recombinant system. Further clinical studies are needed to determine the effect of these new polymorphisms on the metabolism of CYP2C9 substrates.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Etnicidade/genética , Polimorfismo de Nucleotídeo Único/genética , Tolbutamida/metabolismo , Alelos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Povo Asiático , População Negra , Citocromo P-450 CYP2C9 , Genótipo , Haplótipos/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transfecção , População Branca
3.
Pharmacogenetics ; 13(8): 461-72, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12893984

RESUMO

OBJECTIVES: Genetic polymorphisms of cytochromes P450 (CYPs) are a principal reason for inter-individual variations in the metabolism of therapeutic drugs and environmental chemicals in humans. The present study identifies 34 single nucleotide polymorphisms (SNPs) of CYP3A5 including 27 previously unidentified SNPs by direct sequencing of the exons, intron-exon junctions and 5'-upstream region of CYP3A5 from 92 racially diverse individuals (24 Caucasians, 24 Africans, 24 Asians, and 20 individuals of unknown racial origin). RESULTS: Four new CYP3A5 SNPs produced coding changes: R28C, L82R, A337T, and F446S. CYP3A5 R28C occurred in African populations (allelic frequency of 4%). CYP3A5 A337T occurred in Asians (2% allelic frequency), CYP3A5 L82R (occurred in the racially unidentified group) and CYP3A5 F446S (identified in Caucasians with a 2% allelic frequency) were on an allele containing the splice change g.6986A>G known as CYP3A5*3. The newly identified allelic proteins were constructed by site-directed mutagenesis, expressed in Escherichia coli and purified. CYP3A5 L82R was expressed only as denatured CYP420, suggesting it may be unstable. CYP3A5*1 exhibited the highest maximal clearance for testosterone followed by CYP3A5 A337T > CYP3A5 R28C >> CYP3A5 F446S. CYP3A5*1 exhibited a higher V(max) for nifedipine oxidation than CYP3A5 A337T > CYP3A5 R28C >> CYP3A5 F446S. CYP3A5 A337T and CYP3A5 R28C exhibited a 42-64% lower V(max) for nifedipine oxidation than CYP3A5*1. CYP3A5 F446S exhibited a > 95% decrease in the intrinsic clearance for both 6beta-hydroxytestosterone and nifedipine oxidation. CONCLUSION: This study identifies four new potentially defective coding alleles. CYP3A5 F446S is predicted to be more catalytically defective than the splice change alone.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Etnicidade/genética , Polimorfismo de Nucleotídeo Único , Alelos , Sequência de Bases , Citocromo P-450 CYP3A , Primers do DNA , DNA Complementar , Escherichia coli/genética , Humanos , Mutagênese Sítio-Dirigida , Nifedipino/farmacocinética , Testosterona/farmacocinética
4.
Pharmacogenetics ; 12(9): 703-11, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12464799

RESUMO

CYP2C19 is a clinically important enzyme responsible for the metabolism of a number of therapeutic drugs, such as mephenytoin, omeprazole, diazepam, proguanil, propranolol and certain antidepressants. Genetic polymorphisms in this enzyme result in poor metabolizers of these drugs. There are racial differences in the incidence of the poor metabolizer trait, which represents 13-23% of Asians but only 3-5% of Caucasians. In this study, single nucleotide polymorphisms (SNPs) in CYP2C19 were identified by direct sequencing of genomic DNA from 92 individuals from three different racial groups of varied ethnic background, including Caucasians, Asians and blacks. Several new alleles were identified containing the coding changes Arg114 His (CYP2C19*9), Pro227 Leu (CYP2C19*10), Arg150 His (CYP2C19*11), stop491 Cys (CYP2C19*12), Arg410 Cys (CYP2C19*13), Leu17 Pro (CYP2C19*14) and Ile19 Leu (CYP2C19*15). When expressed in a bacterial cDNA expression system, CYP2C19*9 exhibited a modest decrease in the V(max) for 4'-hydroxylation of -mephenytoin, and no alteration in its affinity for reductase. CYP2C19*10 exhibited a dramatically higher K(m) and lower V(max) for mephenytoin. CYP2C19*12was unstable and expressed poorly in a bacterial cDNA expression system. Clinical studies will be required to confirm whether this allele is defective in vivo. CYP2C19*9, CYP2C19*10 and CYP2C19*12 all occurred in African-Americans, or individuals of African descent, and represent new potentially defective alleles of CYP2C19 which are predicted to alter risk of these populations to clinically important drugs.


Assuntos
Alelos , Hidrocarboneto de Aril Hidroxilases/genética , População Negra/genética , Etnicidade/genética , Oxigenases de Função Mista/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Substituição de Aminoácidos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2C19 , Primers do DNA , Frequência do Gene , Genótipo , Humanos , Mefenitoína/metabolismo , Oxigenases de Função Mista/metabolismo , Mutagênese Sítio-Dirigida , Fenótipo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA