Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402509, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588046

RESUMO

Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.

2.
Med Biol Eng Comput ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514500

RESUMO

The extraction of effective classification features from electroencephalogram (EEG) signals in motor imagery is a popular research topic. The Common Spatial Pattern (CSP) algorithm is widely employed in this field. However, the performance of the traditional CSP method depends significantly on the choice of a specific frequency band and channel number of EEG data. Furthermore, inter-class variance among these frequency bands and the limited number of available EEG channels can adversely affect the CSP algorithm's ability to extract meaningful features from the relevant signal frequency bands. We hypothesize that multiple Intrinsic Mode Functions (IMFS), into which the raw EEG signal is decomposed, can better capture the non-Gaussian characteristics of the signal, thus compensating for the limitations of the CSP algorithm when dealing with nonlinear and non-Gaussian distributed data with few channels. Therefore, this paper proposes a novel method that integrates Variational Mode Decomposition (VMD), Phase Space Reconstruction (PSR), and the CSP algorithm to address these issues. VMD is used to filter and enhance the quality of the collected data, PSR is employed to increase the effective data channels (data augmentation), and the subsequent CSP filtering can obtain signals with spatial features, which are decoded by Convolutional Neural Networks (CNN) for action decoding. This study utilizes self-collected EEG data to demonstrate that the new method can achieve a good classification accuracy of 82.30% on average, confirming the improved algorithm's effectiveness and feasibility. Furthermore, this study conducted validation on the publicly available BCI Competition IV dataset 2b, demonstrating an average classification accuracy of 87.49%.

3.
J Neurosci Methods ; 405: 110098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423364

RESUMO

BACKGROUND: Cortico-muscular coherence (CMC) between the cerebral cortex and muscle activity is an effective tool for studying neural communication in the motor control system. To accurately evaluate the coherence between electroencephalogram (EEG) and electromyogram (EMG) signals, it is necessary to accurately calculate the time delay between physiological signals to ensure signal synchronization. NEW METHOD: We proposed a new delay estimation method, named wavelet coherence time lag (WCTL) and the significant increase areas (SIA) index as a measure of the specific region enhancement effect of the magnitude squared coherence (MSC) image. RESULTS: The grip strength level had a small effect on the information transmission time from the cortex to the muscles, while the transmission time from the cortex to different muscle channels was different for the same task. A positive correlation was found between the grip strength level and the SIA index on the ß band of C3-B and the α and ß bands of C3-FDS. COMPARISON WITH EXISTING METHOD: The WCTL method was found to accurately calculate the delay time even when the number of repeated segments was low in a simple motor control model, and the results were more accurate than the rate of voxels change (RVC) and CMC with time lag (CMCTL) methods. CONCLUSIONS: The WCTL is an effective method for detecting the transmission time of information between the cortex and muscles, laying the foundation for future rehabilitation treatment for stroke patients.


Assuntos
Córtex Motor , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Eletroencefalografia/métodos , Força da Mão , Córtex Motor/fisiologia
4.
PLoS One ; 18(12): e0295398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060609

RESUMO

Sign language (SL) has strong structural features. Various gestures and the complex trajectories of hand movements bring challenges to sign language recognition (SLR). Based on the inherent correlation between gesture and trajectory of SL action, SLR is organically divided into gesture-based recognition and gesture-related movement trajectory recognition. One hundred and twenty commonly used Chinese SL words involving 9 gestures and 8 movement trajectories, are selected as research and test objects. The method based on the amplitude state of surface electromyography (sEMG) signal and acceleration signal is used for vocabulary segmentation. The multi-sensor decision fusion method of coupled hidden Markov model is used to complete the recognition of SL vocabulary, and the average recognition rate is 90.41%. Experiments show that the method of sEMG signal and motion information fusion has good practicability in SLR.


Assuntos
Reconhecimento Automatizado de Padrão , Língua de Sinais , Humanos , Eletromiografia , Gestos , Mãos , China , Algoritmos
5.
Front Neurosci ; 17: 1240929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811323

RESUMO

Introduction: Restless legs syndrome (RLS) is a common sensorimotor disorder characterized by an irrepressible urge to move the legs and frequently accompanied by unpleasant sensations in the legs. The pathophysiological mechanisms underlying RLS remain unclear, and RLS is hypothesized to be associated with alterations in white matter tracts. Methods: Diffusion MRI is a unique noninvasive method widely used to study white matter tracts in the human brain. Thus, diffusion-weighted images were acquired from 18 idiopathic RLS patients and 31 age- and sex-matched healthy controls (HCs). Whole brain tract-based spatial statistics (TBSS) and atlas-based analyzes combining crossing fiber-based metrics and tensor-based metrics were performed to investigate the white matter patterns in individuals with RLS. Results: TBSS analysis revealed significantly higher fractional anisotropy (FA) and partial volume fraction of primary (F1) fiber populations in multiple tracts associated with the sensorimotor network in patients with RLS than in HCs. In the atlas based analysis, the bilateral anterior thalamus radiation, bilateral corticospinal tract, bilateral inferior fronto-occipital fasciculus, left hippocampal cingulum, left inferior longitudinal fasciculus, and left uncinate fasciculus showed significantl increased F1, but only the left hippocampal cingulum showed significantly higher FA. Discussion: The results demonstrated that F1 identified extensive alterations in white matter tracts compared with FA and confirmed the hypothesis that crossing fiber-based metrics are more sensitive than tensor-based metrics in detecting white matter abnormalities in RLS. The present findings provide evidence that the increased F1 metric observed in sensorimotor tracts may be a critical neural substrate of RLS, enhancing our understanding of the underlying pathological changes.

6.
J Neural Eng ; 20(5)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37683652

RESUMO

Objective. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.Approach. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.Main result. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.Significance. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Humanos , Encéfalo , Análise por Conglomerados , Simulação por Computador , Córtex Somatossensorial
7.
Med Biol Eng Comput ; 61(12): 3303-3317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667074

RESUMO

Transcranial direct current stimulation (tDCS) is an emerging brain intervention technique that has gained growing attention in recent years in the rehabilitation area. In this paper, we investigated the efficacy of tDCS in the rehabilitation process of stroke patients, utilizing corticomuscular coupling (CMC) and brain functional network analysis. Specifically, we examined changes in CMC relationships between the treatment and control groups before and after rehabilitation by transfer entropy (TE), and constructed brain functional networks by TE. We further calculated features of the functional networks, including node degree, global efficiency, clustering coefficient, characteristic path length, and small world index. Our results demonstrate that CMC in patients increased significantly after treatment, with greater improvements in the tDCS group, particularly within the beta and gamma bands. In addition, the functional brain network analysis revealed enhanced connectivity between brain regions, improved information processing capacity, and increased transmission efficiency in patients as their condition improved. Notably, treatment with tDCS resulted in more significant improvements than the sham group, with a statistically significant difference observed after rehabilitation treatment (p < 0.05). These findings provide compelling evidence regarding the role of tDCS in the treatment of stroke and highlight the potential of this approach in stroke rehabilitation. The use of tDCS for therapeutic interventions in stroke rehabilitation can significantly improve the coupling of patients' functional brain networks. Also, using Transfer Entropy (TE) as a characteristic of CMC, tDCS was found to significantly enhance patients' TE, i.e. enhanced CMC.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Encéfalo
8.
Math Biosci Eng ; 20(6): 10530-10551, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322947

RESUMO

Changes in the functional connections between the cerebral cortex and muscles can evaluate motor function in stroke rehabilitation. To quantify changes in functional connections between the cerebral cortex and muscles, we combined corticomuscular coupling and graph theory to propose dynamic time warped (DTW) distances for electroencephalogram (EEG) and electromyography (EMG) signals as well as two new symmetry metrics. EEG and EMG data from 18 stroke patients and 16 healthy individuals, as well as Brunnstrom scores from stroke patients, were recorded in this paper. First, calculate DTW-EEG, DTW-EMG, BNDSI and CMCSI. Then, the random forest algorithm was used to calculate the feature importance of these biological indicators. Finally, based on the results of feature importance, different features were combined and validated for classification. The results showed that the feature importance was from high to low as CMCSI/BNDSI/DTW-EEG/DTW-EMG, while the feature combination with the highest accuracy was CMCSI+BNDSI+DTW-EEG. Compared to previous studies, combining the CMCSI+BNDSI+DTW-EEG features of EEG and EMG achieved better results in the prediction of motor function rehabilitation at different levels of stroke. Our work implies that the establishment of a symmetry index based on graph theory and cortical muscle coupling has great potential in predicting stroke recovery and promises to have an impact on clinical research applications.


Assuntos
Músculo Esquelético , Acidente Vascular Cerebral , Humanos , Eletromiografia/métodos , Movimento , Eletroencefalografia , Biomarcadores
9.
Artigo em Inglês | MEDLINE | ID: mdl-37083516

RESUMO

Motor imagery (MI) electroencephalogram (EEG) signals have an important role in brain-computer interface (BCI) research. However, effectively decoding these signals remains a problem to be solved. Traditional EEG signal decoding algorithms rely on parameter design to extract features, whereas deep learning algorithms represented by convolution neural network (CNN) can automatically extract features, which is more suitable for BCI applications. However, when EEG data is taken as input in raw time series, traditional 1D-CNNs are unable to acquire both frequency domain and channel association information. To solve this problem, this study proposes a novel algorithm by inserting two modules into CNN. One is the Filter Band Combination (FBC) Module, which preserves as many frequency domain features as possible while maintaining the time domain characteristics of EEG. Another module is Multi-View structure that can extract features from the output of FBC module. To prevent over fitting, we used a cosine annealing algorithm with restart strategy to update the learning rate. The proposed algorithm was validated on the BCI competition dataset and the experiment dataset, using accuracy, standard deviation, and kappa coefficient. Compared with traditional decoding algorithms, our proposed algorithm achieved an improvement of the maximum average correct rate of 6.6% on the motion imagery 4-classes recognition mission and 11.3% on the 2-classes classification task.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Humanos , Redes Neurais de Computação , Algoritmos , Eletroencefalografia
10.
Med Biol Eng Comput ; 61(7): 1675-1686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853396

RESUMO

Accurate continuous estimation of multi-DOF movement is crucial for simultaneous control of advanced myoelectric prosthetic. The decoupling of multi-DOF is a challenge for continuous estimation. In this paper, we propose a model combined non-negative matrix factorization (NMF) with Hadamard product and L2 regulation to suppress the non-active DOF and achieve the multi-DOF movement continuous estimation. The L2 regulation of non-active DOF activation coefficient was added to the object function of NMF with the benefit of Hadamard product. The angles were estimated by a linear combination of the activation coefficients. We performed a set of continuous estimation experiments for single-DOF and multi-DOF movements of wrist flexion/extend and hand open/close. The results illustrated that the novel model could suppress non-active DOF in single-DOF movement better than other methods based on muscle synergy theory. Moreover, we investigated the robustness of suppression effect and the similarity of synergy matrices at different speeds for NMF-based methods, and the results showed that the proposed method had a superior performance.


Assuntos
Músculo Esquelético , Extremidade Superior , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Punho/fisiologia , Movimento/fisiologia
11.
Med Biol Eng Comput ; 61(5): 951-965, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36662378

RESUMO

The visual movement illusion (VMI) is a subjective experience. This illusion is produced by watching the subject's motion video. At the same time, VMI evokes awareness of body ownership. We applied the power spectral density (PSD) matrix and the partial directed correlation (PDC) matrix to build the PPDC matrix for the γ2 band (34-98.5 Hz), combining cerebral cortical and musculomotor cortical complexity and PPDC to quantify the degree of body ownership. Thirty-five healthy subjects were recruited to participate in this experiment. The subjects' electroencephalography (EEG) and surface electromyography (sEMG) data were recorded under resting conditions, observation conditions, illusion conditions, and actual seated front-kick movements. The results show the following: (1) VMI activates the cerebral cortex to some extent; (2) VMI enhances cortical muscle excitability in the rectus femoris and medial vastus muscles; (3) VMI induces a sense of body ownership; (4) the use of PPDC values, fuzzy entropy values of muscles, and fuzzy entropy values of the cerebral cortex can quantify whether VMI induces awareness of body ownership. These results illustrate that PPDC can be used as a biomarker to show that VMI affects changes in the cerebral cortex and as a quantitative tool to show whether body ownership awareness arises.


Assuntos
Ilusões , Humanos , Eletromiografia , Ilusões/fisiologia , Propriedade , Eletroencefalografia , Movimento/fisiologia , Extremidade Inferior , Mãos/fisiologia
12.
Brain Sci ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552139

RESUMO

Major depressive disorder (MDD) is a common mental illness. This study used electroencephalography (EEG) to explore the effects of music therapy on brain networks in MDD patients and to elucidate changes in functional brain connectivity in subjects before and after musical stimulation. EEG signals were collected from eight MDD patients and eight healthy controls. The phase locking value was adopted to calculate the EEG correlation of different channels in different frequency bands. Correlation matrices and network topologies were studied to analyze changes in functional connectivity between brain regions. The results of the experimental analysis found that the connectivity of the delta and beta bands decreased, while the connectivity of the alpha band increased. Regarding the characteristics of the EEG functional network, the average clustering coefficient, characteristic path length and degree of each node in the delta band decreased significantly after musical stimulation, while the characteristic path length in the beta band increased significantly. Characterized by the average clustering coefficient and characteristic path length, the classification of depression and healthy controls reached 93.75% using a support vector machine.

13.
Brain Sci ; 12(8)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892418

RESUMO

The use of electroencephalography to recognize human emotions is a key technology for advancing human-computer interactions. This study proposes an improved deep convolutional neural network model for emotion classification using a non-end-to-end training method that combines bottom-, middle-, and top-layer convolution features. Four sets of experiments using 4500 samples were conducted to verify model performance. Simultaneously, feature visualization technology was used to extract the three-layer features obtained by the model, and a scatterplot analysis was performed. The proposed model achieved a very high accuracy of 93.7%, and the extracted features exhibited the best separability among the tested models. We found that adding redundant layers did not improve model performance, and removing the data of specific channels did not significantly reduce the classification effect of the model. These results indicate that the proposed model allows for emotion recognition with a higher accuracy and speed than the previously reported models. We believe that our approach can be implemented in various applications that require the quick and accurate identification of human emotions.

14.
Int J Neurosci ; : 1-9, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35815432

RESUMO

Objective: Stroke is the leading cause of disability worldwide. Traditionally, doctors assess stroke rehabilitation assessment, which can be subjective. Therefore, an objective assessment method is required.Methods: In this context, we investigated the changes in brain functional connectivity patterns and corticomuscular coupling in stroke patients during rehabilitation. In this study, electroencephalogram (EEG) and electromyogram (EMG) of stroke patients were collected synchronously at baseline(BL), two weeks after BL, and four weeks after BL. A brain functional network was established, and the corticomuscular coupling relationship was calculated using phase transfer entropy (PTE).Results: We found that during the rehabilitation of stroke patients, the overall connection of the brain functional network was strengthened, and the network characteristic value increased. The average corticomuscular PTE appeared to first decrease and subsequently increase, and the PTE increase in the frontal lobe was significant.Value: In this study, PTE was used for the first time to analyze the relationship between EEG signals in patients with hemiplegia. We believe that our findings contribute to evaluating the rehabilitation of stroke patients with hemiplegia.

15.
IEEE J Biomed Health Inform ; 26(10): 5085-5096, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881606

RESUMO

Functional corticomuscular coupling (FCMC) between the cerebral motor cortex and muscle activity reflects multi-layer and nonlinear interactions in the sensorimotor system. Considering the inherent multiscale characteristics of physiological signals, we proposed multiscale transfer spectral entropy (MSTSE) and introduced the unidirectionally coupled Hénon maps model to verify the effectiveness of MSTSE. We recorded electroencephalogram (EEG) and surface electromyography (sEMG) in steady-state grip tasks of 29 healthy participants and 27 patients. Then, we used MSTSE to analyze the FCMC base on EEG of the bilateral motor areas and the sEMG of the flexor digitorum superficialis (FDS). The results show that MSTSE is superior to transfer spectral entropy (TSE) method in restraining the spurious coupling and detecting the coupling more accurately. The coupling strength was higher in the ß1, ß2, and γ2 bands, among which, it was highest in the ß1 band, and reached its maximum at the 22-30 scale. On the directional characteristics of FCMC, the coupling strength of EEG→sEMG is superior to the opposite direction in most cases. In addition, the coupling strength of the stroke-affected side was lower than that of healthy controls' right hand in the ß1 and ß2 bands and the stroke-unaffected side in the ß1 band. The coupling strength of the stroke-affected side was higher than that of the stroke-unaffected side and the right hand of healthy controls in the sEMG→EEG direction of γ2 band. This study provides a new perspective and lays a foundation for analyzing FCMC and motor dysfunction.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Eletroencefalografia/métodos , Eletromiografia/métodos , Entropia , Humanos , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia
16.
Brain Sci ; 12(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35741639

RESUMO

Corticomuscular functional coupling reflects the neuronal communication between cortical oscillations and muscle activity. Although the motor cortex is significantly involved in complex motor tasks, there is still no detailed understanding of the cortical contribution during such tasks. In this paper, we first propose a vine copula model to describe corticomuscular functional coupling and we construct the brain muscle function network. First, we recorded surface electromyography (sEMG) and electroencephalography (EEG) signals corresponding to the hand open, hand close, wrist flexion, and wrist extension motions of 12 participants during the initial experiments. The pre-processed signals were translated into the marginal density functions of different channels through the generalized autoregressive conditional heteroscedasticity model. Subsequently, we calculated the Kendall rank correlation coefficient, and used the R-vine model to decompose the multi-dimensional marginal density function into two-dimensional copula coefficient to determine the structure of the R-vine. Finally, we used the normalized adjacency matrix to structure the corticomuscular network for each hand motion considered. Based on the adjacency matrix, we found that the Kendall rank correlation coefficient between EEG and EMG was low. Moreover, a significant difference was observed in the correlation between the C3 and EMG signals for the different hand-motion activities. We also observed two core nodes in the networks corresponding to the four activities when the vine copula model was applied. Moreover, there was a large difference in the connections of the network models corresponding to the different hand-motion activities. Therefore, we believe that our approach is sufficiently accurate in identifying and classifying motor tasks.

17.
J Neurosci Methods ; 362: 109320, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390757

RESUMO

BACKGROUND: Emotions play a crucial role in human communication and affect all aspects of human life. However, to date, there have been few studies conducted on how movements under different emotions influence human brain activity and cortico-muscular coupling (CMC). NEW METHODS: In this study, for the first time, electroencephalogram (EEG) and electromyogram physiological electrical signals were used to explore this relationship. We performed frequency domain and nonlinear dynamics analyses on EEG signals and used transfer entropy to explore the CMC associated with the emotion-movement relationship. To study the transmission of information between different brain regions, we also constructed a functional brain network and calculated various network metrics using graph theory. RESULTS: We found that, compared with a neutral emotional state, movements made during happy and sad emotions had increased CMC strength and EEG power and complexity. The functional brain network metrics of these three emotional states were also different. COMPARISON WITH EXISTING METHODS: Much of the emotion-movement relationship research has been based on subjective expression and external performance. Our research method, however, focused on the processing of physiological electrical signals, which contain a wealth of information and can objectively reveal the inner mechanisms of the emotion-movement relationship. CONCLUSIONS: Different emotional states can have a significant influence on human movement. This study presents a detailed introduction to brain activity and CMC.


Assuntos
Encéfalo , Eletroencefalografia , Eletromiografia , Emoções , Humanos , Movimento
18.
Math Biosci Eng ; 18(4): 4341-4357, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34198440

RESUMO

Corticomuscular connectivity plays an important role in the neural control of human motion. This study recorded electroencephalography (EEG) and surface electromyography (sEMG) signals from subjects performing specific tasks (walking on level ground and on stairs) based on metronome instructions. This study presents a novel method based on vine copula to jointly model EEG and sEMG signals. The advantage of vine copula is its applicability in the construction of dependency structures to describe the connectivity between the cortex and muscles during different movements. A corticomuscular function network was also constructed by analyzing the dependence of each channel sample. The successfully constructed network shows information transmission between different divisions of the cortex, between muscles, and between the cortex and muscles when the body performs lower limb movements. Additionally, it highlights the potential of the vine copula concept used in this study, indicating that significant changes in the corticomuscular network under lower limb movements can be quantified by effective connectivity values.


Assuntos
Músculo Esquelético , Caminhada , Eletroencefalografia , Eletromiografia , Humanos , Movimento
19.
Neurosci Lett ; 760: 136012, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34098023

RESUMO

The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.


Assuntos
Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Análise de Correlação Canônica , Eletroencefalografia , Eletromiografia , Entropia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Modelos Neurológicos , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/reabilitação
20.
J Neural Eng ; 18(4)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038874

RESUMO

Objective. The main objective of this research was to study cortico-muscular, intra-cortical, and inter-muscular coupling. Herein, we established a cortico-muscular functional network (CMFN) to assess the network differences associated with making a fist, opening the hand, and wrist flexion.Approach. We used transfer entropy (TE) to calculate the causality between electroencephalographic and electromyographic data and established the TE connection matrix. We then applied graph theory to analyze the clustering coefficient, global efficiency, and small-world attributes of the CMFN. We also used Relief-F to extract the features of the TE connection matrix of the beta2 band for the different hand movements and observed high accuracy when this feature was used for action recognition.Main results. We found that the CMFN of the three actions in the beta band had small-world attributes, among which the beta2 band's small-world was stronger. Moreover, we found that the extracted features were mainly concentrated in the left frontal area, left motor area, occipital lobe, and related muscles, suggesting that the CMFN could be used to assess the coupling differences between the cortex and the muscles that are associated with different hand movements. Overall, our results showed that the beta2 (21-35 Hz) wave is the main information carrier between the cortex and the muscles, and the CMFN can be used in the beta2 band to assess cortico-muscular coupling.Significance. Our study preliminarily explored the CMFN associated with hand movements, providing additional insights regarding the transmission of information between the cortex and the muscles, thereby laying a foundation for future rehabilitation therapy targeting pathological cortical areas in stroke patients.


Assuntos
Mãos , Córtex Motor , Eletroencefalografia , Eletromiografia , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...