Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
2.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38488077

RESUMO

Ion migration activated by illumination is a critical factor responsible for the performance decline and stability degradation of perovskite solar cells (PSCs). While ion migration has been widely believed to be much slower than charge transport, recent research suggests that, despite the lack of understanding of the mechanism, it may also be involved in a series of rapid photoelectric responses of PSCs. Here, we report an improved circuit-switched transient photoelectric technique with nanosecond temporal resolution, which enables quantitative characterization of ion migration dynamics in PSCs across a fairly broad time window. Specifically, ion migration occurring within microseconds after illumination (corresponding to a diffusion length of ∼10-7 cm) is unambiguously identified. In conjunction with the composition engineering protocol, we justify that it arises from the short-range migration of halide anions and organic cations around the contact/perovskite interface. The rapid ion migration kinetics revealed in this work strongly complement the well-established ion migration model, which offers new insights into the mechanism of ion-carrier interaction in PSC devices.

3.
Curr Med Imaging ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38462831

RESUMO

BACKGROUND: Hepatic portal venous gas (HPVG) is very rare; it is associated with multiple gastrointestinal etiologies, with pathophysiology not yet fully understood. It is characteristically fast-progressing and has a high mortality rate. Treatment choice depends on the etiology, including conservative and surgical management. CASE PRESENTATION: We report an adult patient (less than 25 years old) of HPVG combined with acute upper gastrointestinal hemorrhage, in which massive gas in the hepatic portal vein system by computed tomography of the abdomen was rapidly dissipated by nasogastric decompression conservative management. CONCLUSION: Nasogastric decompression can be an effective treatment approach for HPVG when timely surgical treatment is not required.

4.
Talanta ; 273: 125931, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518716

RESUMO

Tyrosinase (TYR) is an essential oxidase that is responsible for the regulation of multiple physiological processes and diseases. Achieving the trace and reliable detection of TYR in complex biological samples is of great significance for the diagnosis of TYR-related diseases, but which faces a great challenge. In this study, we developed an ingenious and powerful method for the ultrasensitive detection of TYR by click reaction-combined dark-field microscopy. This method begins with the formation of cuprous ions (Cu+) based on the reduction of copper ions (Cu2+) by ascorbic acid (AA). Subsequently, the formed Cu+ can catalyze the crosslinking between azide- and alkyne-functionalized gold nanoparticles, causing a significant red-shift in the scattering spectrum. However, AA can chelate with TYR, which inhibits the generation of Cu+ and subsequent click reaction, thus achieving TYR-controlled scattering spectral shift. The proposed sensing platform shows a good linear detection range of 0.01-0.8 U/L with a low detection limit of 0.003 U/L, which is three orders of magnitude lower than the best performance of TYR sensing probes reported to date. Most importantly, the strategy has the ability to reliably and accurately detect TYR in serum sample, suggesting its potential clinical application in diagnosing TYR-related diseases. This visual sensing platform offers promising prospects for future research in enzymatic analysis and biomedical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Monofenol Mono-Oxigenase , Cobre/análise , Ouro , Técnicas Biossensoriais/métodos , Ácido Ascórbico , Íons , Química Click/métodos
5.
Brain Res ; 1833: 148885, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38531465

RESUMO

BACKGROUND: Immune-inflammatory response is a key element in the occurrence and development of olfactory dysfunction (OD) in patients with allergic rhinitis (AR). As one of the core factors in immune-inflammatory responses, interleukin (IL)-6 is closely related to the pathogenesis of allergic diseases. It may also play an important role in OD induced by diseases, such as Sjögren's syndrome and coronavirus disease 2019. However, there is no study has reported its role in OD in AR. Thus, this study aimed to investigate the role of IL-6 in AR-related OD, in an attempt to discover a new target for the prevention and treatment of OD in patients with AR. METHODS: Differential expression analysis was performed using the public datasets GSE52804 and GSE140454 for AR, and differentially expressed genes (DEGs) were obtained by obtaining the intersection points between these two datasets. IL-6, a common differential factor, was obtained by intersecting the DEGs with the General Olfactory Sensitivity Database (GOSdb) again. A model of AR mice with OD was developed by sensitizing with ovalbumin (OVA) to verify the reliability of IL-6 as a key factor of OD in AR and explore the potential mechanisms. Furthermore, a supernatant and microglia co-culture model of nasal mucosa epithelial cells stimulated by the allergen house dust mite extract Derp1 was established to identify the cellular and molecular mechanisms of IL-6-mediated OD in AR. RESULTS: The level of IL-6 in the nasal mucosa and olfactory bulb of AR mice with OD significantly increased and showed a positive correlation with the expression of olfactory bulb microglia marker Iba-1 and the severity of OD. In-vitro experiments showed that the level of IL-6 significantly increased in the supernatant after the nasal mucosa epithelial cells were stimulated by Derp1, along with significantly decreased barrier function of the nasal mucosa. The expression levels of neuroinflammatory markers IL-1ß and INOS increased after a conditioned culture of microglia with the supernatant including IL-6. Then knockdown (KD) of IL-6R by small interfering RNA (siRNA), the expression of IL-1ß and INOS significantly diminished. CONCLUSION: IL-6 plays a key role in the occurrence and development of OD in AR, which may be related to its effect on olfactory bulb microglia-mediated neuroinflammation.


Assuntos
Modelos Animais de Doenças , Interleucina-6 , Transtornos do Olfato , Rinite Alérgica , Animais , Camundongos , Interleucina-6/metabolismo , Microglia/metabolismo , Transtornos do Olfato/metabolismo , Bulbo Olfatório/metabolismo , Ovalbumina , Rinite Alérgica/metabolismo , Masculino , Camundongos Endogâmicos C57BL
6.
Iran J Basic Med Sci ; 27(3): 375-382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333754

RESUMO

Objectives: Human umbilical cord mesenchymal stem cells (HUC-MSCs) are pluripotent stem cells with anti-inflammatory and immunomodulatory properties used in the treatment of acute lung injury (ALI). However, the treatment of ALI using exosomes derived from HUC-MSCs (HUC-MSC-exos) primed with interferon-gamma (IFN-γ-exos) has not been described. This study investigated the effects of IFN-γ-exos on ALI. Materials and Methods: IFN-γ primed and unprimed HUC-MSC-exos (IFN-γ-exos and CON-exos, respectively) were extracted, identified, and traced. A549 cells and mice subjected to lipopolysaccharide (LPS)-induced inflammation were treated with IFN-γ-exos or CON-exos. Viability; interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and reactive oxygen species (ROS) levels; NF-κB p65, and NLRP3 expression and histology and lung injury scores were measured in cell, supernatant or lung tissue. Results: Indoleamine 2,3-dioxygenase (IDO) mRNA expression was elevated in HUC-MSCs primed with 5 ng/mL IFN-γ (P<0.001), and IFN-γ-exos and CON-exos were successfully extracted. LPS-induced inflammation resulted in decreased cell viability in A549 cells, and increased IL-1ß, IL-6, TNF-α and ROS levels and NF-κB p65 and NLRP3 expression in A549 cells and mice(P<0.05 to P<0.001). Treatment with IFN-γ-exos and CON-exos increased cell viability and decreased the concentrations of IL-1ß, and ROS, expression of NF-κB p65 and NLRP3, and the lung injury score, and these effects were more obvious for IFN-γ-exos(P<0.05 to P<0.001). Conclusion: IFN-γ-exos reduced oxidative stress and inflammatory responses in LPS-induced A549 cells and mice. The result demonstrated the therapeutic potential of IFN-γ-exos in LPS-induced ALI.

7.
J Ethnopharmacol ; 326: 117981, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38417599

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sanchen powder is a traditional Tibetan medicine comprising Bambusae Concretio Silicea, Carthami Flos, and Bovis Calculus Artifactus. Bambusae Concretio Silicea is the dried mass of secreted fluid in the stalks of Gramineae plants such as Bambusa textilis McClure or Schizostachyum chinense Rendle. Carthami Flos is the dried flower of Carthamus tinctorius L. in the Compositae plant. Bovis Calculus Artifactus is made from ox bile powder, cholic acid, hyodeoxycholic acid, taurine, bilirubin, cholesterol, and trace elements. Research has evidenced the antibacterial efficacy of Sanchen powder, albeit its active constituents for this effect are yet to be established. AIM OF THE STUDY: To investigate effective compounds, potential targets, and molecular mechanism of Sanchen powder for its antibacterial properties by using network pharmacology combined with in vitro validation, with the aims of observing the action of effective compounds in Sanchen powder and exploring new therapeutic strategies for antibacterial. MATERIALS AND METHODS: In this study, UPLC-Q-TOF-MS was utilized to identify the chemical composition in Sanchen powder and its blood-borne chemical ingredients post-oral intake. A network pharmacology analysis was used to establish the chemical compound in the blood following oral administration-target-disease network. The study aimed to identify antibacterial active ingredients, which were then subjected to molecular docking and pharmacodynamic experiments to verify their efficacy. RESULTS: The findings demonstrate that following oral administration, the blood contains seven key components of Sanchen powder, including bilirubin, glycochenodeoxycholic acid, glycocholic acid, taurocholic acid, phenylalanine, safflomin A, and tryptophan. Additionally, the network pharmacology and molecular docking study results indicate the potential antibacterial effects of bilirubin, glycocholic acid, and glycochenodeoxycholic acid. In vitro antibacterial experiments revealed that bilirubin, glycocholic acid, and glycochenodeoxycholic acid could restrict the growth of the Staphylococcus aureus cell membrane at a certain concentration. Moreover, they exhibited antibacterial effects on Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Escherichia coli. CONCLUSIONS: Bilirubin, glycocholic acid, and glycochenodeoxycholic acid could be effective therapeutic ingredients for the antibacterial effects of Sanchen powder. These results offer a foundation for further clinical application and research on the antibacterial effect of Sanchen powder, a Traditional Tibetan Medicine.


Assuntos
Cálculos , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Tibetana , Pós , Simulação de Acoplamento Molecular , Ácido Glicoquenodesoxicólico , Antibacterianos/farmacologia , Bilirrubina , Medicamentos de Ervas Chinesas/farmacologia
8.
Cell Biochem Biophys ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216808

RESUMO

Exosomes (exos) are primarily responsible for the process of mesenchymal stem cells (MSCs) treatment for acute lung injury (ALI), but the mechanism remains unclear, particularly in altered microenvironment. Therefore, this study aimed to investigate the potential mechanism of exos derived from human umbilical cord mesenchymal stem cells (hucMSCs) primed with interferon-gamma (IFN-γ) on ALI and to propose a promising and cell-free strategy. This study extracted exos from hucMSCs supernatant primed and unprimed with IFN-γ marked with IFN-γ-exos and CON-exos, which were identified and traced. IFN-γ-exos administration to ALI models suppressed the NF-κB signaling pathway compared to CON-exos, which were quantified through western blot and immunohistochemical staining. Reverse transcription-quantitative polymerase chain reaction validated miR-199b-5p expression in the IFN-γ-exos and CON-exos treatment groups. Data analysis, a dual-luciferase reporter assay, and cell transfection were conducted to investigate the target binding between miR-199b-5p and Aftiphilin (AFTPH), with AFTPH expression analyzed via cell immunofluorescence and western blot. Co-immunoprecipitation was conducted for the interaction between AFTPH and NF-κB p65. The result revealed that miR-199b-5p was down-regulated in the IFN-γ-exos treatment group, which had a target binding site with AFTPH, and an interaction with NF-κB p65. Consequently, IFN-γ-exos inhibited the NF-κB signaling pathway in ALI in vitro and in vivo through the miR-199b-5p/AFTPH axis. Our results demonstrated new directions of novel and targeted treatment for ALI.

9.
Opt Lett ; 49(2): 226-229, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194534

RESUMO

We present a single-shot detection method of terahertz correlated second harmonic generation in plasma-based sources by directly mixing an optical probe into femtosecond laser-induced plasma filaments in air. The single-shot second harmonic trace is obtained by measuring a second harmonic generation on a conventional CCD with a spatiotemporally distorted probe beam. The system shows a spectrometer resolution of 22 fs/pixel on the CCD and a true resolution on the order of the probe pulse duration. With considerable THz peak electric field strength, this formalism can open the door to single-shot THz detection without bandwidth limitations.

10.
Nanoscale ; 16(3): 1115-1119, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38116681

RESUMO

We report a post-synthetic treatment method based on perfluorobutanesulfonic acid (PFBA) to ameliorate the photophysical performance of perovskite nanocrystals. By virtue of the PFBA treatment, both the photoluminescence efficiency and stability of perovskite quantum dot-based colloidal solutions and the electrical conductivity of their close-packed films are simultaneously improved.

11.
Front Optoelectron ; 16(1): 44, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091154

RESUMO

The concept of Terahertz Field-Induced Second Harmonic (TFISH) Generation is revisited to introduce a single-shot detection scheme based on third order nonlinearities. Focused specifically on the further development of THz plasma-based sources, we begin our research by reimagining the TFISH system to serve as a direct plasma diagnostic. In this work, an optical probe beam is used to mix directly with the strong ponderomotive current associated with laser-induced ionization. A four-wave mixing (FWM) process then generates a strong second-harmonic optical wave because of the mixing of the probe beam with the nonlinear current components oscillating at THz frequencies. The observed conversion efficiency is high enough that for the first time, the TFISH signal appears visible to the human eye. We perform spectral, spatial, and temporal analysis on the detected second-harmonic frequency and show its direct relationship to the nonlinear current. Further, a method to detect incoherent and coherent THz inside plasma filaments is devised using spatio-temporal couplings. The single-shot detection configurations are theoretically described using a combination of expanded FWM models with Kostenbauder and Gaussian Q-matrices. We show that the retrieved temporal traces for THz radiation from single- and two-color laser-induced air-plasma sources match theoretical descriptions very well. High temporal resolution is shown with a detection bandwidth limited only by the spatial extent of the probe laser beam. Large detection bandwidth and temporal characterization is shown for THz radiation confined to under-dense plasma filaments induced by < 100 fs lasers below the relativistic intensity limit.

12.
Adv Healthc Mater ; : e2303762, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047767

RESUMO

Surgical residual tumor lesions (R1 resection of surgical procedures (e.g., liver cancer infiltrating the diaphragm, surgical residual breast cancer, postoperative residual ovarian cancer) or boundary residual after ablation) and lymph node metastasis that cannot be surgically resected (retroperitoneal lymph nodes) significantly affect postoperative survival of tumor patients. This clinical conundrum poses three challenges for local drug delivery systems: stable and continuous delivery, good biocompatibility, and the ability to package new targeted drugs that can synergize with other treatments. Here, a drug-laden hydrogel generated from pure DNA strands and highly programmable in adjusting its mesh size is reported. Meanwhile, the DNA hydrogel can assist the microcrystallization of novel radiosensitizing drugs, ataxia telangiectasia and rad3-related protein (ATR) inhibitor (Elimusertib), further facilitating its long-term release. When applied to the tumor site, the hydrogel system demonstrates significant antitumor activity, minimized systemic toxicity, and has a modulatory effect on the tumor-immune cell interface. This drug-loaded DNA-hydrogel platform represents a novel modality for adjuvant therapy in patients with surgical residual tumor lesions and lymph node metastasis.

13.
J Phys Chem Lett ; 14(44): 9951-9959, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37905503

RESUMO

The utilization of the sol-gel method for fabricating planar SnO2 as the electron transport layer (ETL) induces numerous defects on the SnO2 layer surface and perovskite film bottom, causing considerable deterioration of the device performance. Conventional inorganic salt-doped SnO2 precursor solutions used for passivation may cause incomplete substrate coverage due to the presence of inorganic salt crystals, further degrading the device performance. Here, a substrate modification approach involving the pretreatment of a fluorine-doped SnO2 (FTO) substrate with NH4PF6 is proposed. The interaction between PF6- ions and the FTO substrate enhances SnO2 film quality; excess PF6- ions decrease the number of defects on the film surface. NH4+ ions react with an -OH stabilizing agent in the SnO2 solution and are eliminated during annealing. The combined effects suppress nonradiative recombination and ion migration at the ETL-perovskite interface. The corresponding high-quality perovskite solar cells (PSCs) exhibit a fill factor of ∼0.825; PSC efficiency increases from 19.59% to 22.32%.

14.
Cytotechnology ; 75(6): 461-472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37841958

RESUMO

The NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) gene has been reported to be upregulated in colorectal cancer (CRC) and is associated with worse prognosis. However, the specific function and underlying mechanism of NDUFA4L2 in colon adenocarcinoma (COAD) under hypoxia has never been investigated. Our study discovered that hypoxia promoted the viability, metastasis, and epithelial-mesenchymal transition (EMT) of COAD cells. Besides, hypoxia-induced HIF-1α upregulated the expression of NDUFA4L2 which served as an oncogene and an independent diagnostic and prognostic marker in COAD. Under hypoxic environment, NDUFA4L2 mediated the viability, metastasis, and epithelial-EMT of COAD cells. Additionally, the ROS-dependent PI3K/Akt signaling was activated by NDUFA4L2 in COAD in hypoxia and NDUFA4L2 facilitated the malignant behaviors of hypoxia-treated COAD cells by elevating ROS production. Collectively, abundant NDUFA4L2 expression induced by HIF-1α under hypoxia promoted the development of COAD through activation of the PI3K/AKT signaling in a ROS-dependent manner, indicating NDUFA4L2 as a promising target in COAD diagnosis and treatment.

15.
Front Immunol ; 14: 1240248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691955

RESUMO

In addition to typical respiratory symptoms, patients with asthma are frequently accompanied by cognitive decline, mood disorders (anxiety and depression), sleep disorders, olfactory disorders, and other brain response manifestations, all of which worsen asthma symptoms, form a vicious cycle, and exacerbate the burden on families and society. Therefore, studying the mechanism of neurological symptoms in patients with asthma is necessary to identify the appropriate preventative and therapeutic measures. In order to provide a comprehensive reference for related research, we compiled the pertinent literature, systematically summarized the latest research progress of asthma and its brain response, and attempted to reveal the possible "lung-brain" crosstalk mechanism and treatment methods at the onset of asthma, which will promote more related research to provide asthmatic patients with neurological symptoms new hope.


Assuntos
Asma , Humanos , Encéfalo , Ansiedade , Transtornos de Ansiedade , Pulmão
16.
Int J Pharm ; 643: 123256, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482229

RESUMO

The transdermal drug delivery system (TDDS) is an effective strategy for the treatment of melanoma with fewer side effects and good biocompatible, but the skin penetration of drugs should be further promoted. Here, we proposed a new system that combined curcumin liposomes (Cur-Lips) with skin-penetrating peptides to promote skin penetration ability. However, the preparation of Cur-Lips has drawbacks of instability and low entrapment efficiency by the traditional methods. We thus innovatively designed and applied a microfluidic chip to optimize the preparation of Cur-Lips. Cur-Lips exhibited a particle size of 106.22 ± 4.94 nm with a low polydispersity index (<0.3) and high entrapment efficiency of 99.33 ± 1.05 %, which were prepared by the microfluidic chip. The Cur-Lips increased the skin penetration capability of Cur by 2.76 times compared to its solution in vitro skin penetration experiment. With the help of skin-penetrating peptide TD-1, the combined system further promoted the skin penetration capability by 4.48 times. The (TD-1 + Cur-Lips) system also exhibited a superior inhibition effect of the tumor to B16F10 in vitro. Furthermore, the topical application of (TD-1 + Cur-Lips) gel suppressed melanoma growth in vivo, and induced tumor cell apoptosis in tumor tissues. The skin-penetration promotion mechanism of the system was investigated. It was proved that the system could interact with the lipids and keratin on the stratum corneum to promote the Cur distribute into the stratum corneum through hair follicles and sweat glands. We proved that the microfluidic chips had unique advantages for the preparation of liposomes. The innovative combined system of liposomes and biological transdermal enhancers can effectively promote the skin penetration effect of drugs and have great potential for the prevention and treatment of melanoma.


Assuntos
Curcumina , Melanoma , Humanos , Lipossomos , Curcumina/farmacologia , Microfluídica , Inibidores de Ciclo-Oxigenase , Melanoma/tratamento farmacológico , Peptídeos , Tamanho da Partícula
17.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430544

RESUMO

Two-color laser field-induced plasma filaments are efficient broadband terahertz (THz) sources with intense THz waves emitted mainly in the forward direction, and they have been investigated intensively. However, investigations on the backward emission from such THz sources are rather rare. In this paper, we theoretically and experimentally investigate the backward THz wave radiation from a two-color laser field-induced plasma filament. In theory, a linear dipole array model predicts that the proportion of the backward emitted THz wave decreases with the length of the plasma filament. In our experiment, we obtain the typical waveform and spectrum of the backward THz radiation from a plasma with a length of about 5 mm. The dependence of the peak THz electric field on the pump laser pulse energy indicates that the THz generation processes of the forward and backward THz waves are essentially the same. As the laser pulse energy changes, there is a peak timing shift in the THz waveform, implying a plasma position change caused by the nonlinear-focusing effect. Our demonstration may find applications in THz imaging and remote sensing. This work also contributes to a better understanding of the THz emission process from two-color laser-induced plasma filaments.

18.
Anal Chem ; 95(30): 11273-11279, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478050

RESUMO

Dopamine (DA) is an important neurotransmitter, which not only participates in the regulation of neural processes but also plays critical roles in tumor progression and immunity. However, direct identification of DA-containing exosomes, as well as quantification of DA in single vesicles, is still challenging. Here, we report a nanopipette-assisted method to detect single exosomes and their dopamine contents via amperometric measurement. The resistive-pulse current measured can simultaneously provide accurate information of vesicle translocation and DA contents in single exosomes. Accordingly, DA-containing exosomes secreted from HeLa and PC12 cells under different treatment modes successfully detected the DA encapsulation efficiency and the amount of exosome secretion that distinguish between cell types. Furthermore, a custom machine learning model was constructed to classify the exosome signals from different sources, with an accuracy of more than 99%. Our strategy offers a useful tool for investigating single exosomes and their DA contents, which facilitates the analysis of DA-containing exosomes derived from other untreated or stimulated cells and may open up a new insight to the research of DA biology.

19.
FASEB J ; 37(6): e22955, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37159387

RESUMO

The pathogenesis of allergic rhinitis (AR)-related olfactory dysfunction (OD) remains unknown. Inhibiting microglial response in olfactory bulb (OB) can ameliorate AR-related OD, but no precise targets have been available. In this study, we established a mouse model of ovalbumin (OVA)-induced AR and combined with the application of P2X7 receptor (P2X7R)-specific antagonists and cell culture in conditioned medium to investigate the role and mechanism of OB microglial P2X7R in AR-related OD. Serum IgE and IL-5 levels determined via ELISA and federated the number of nose-scratching to affirm the success of OVA-induced AR mouse model. Buried food pellet test was used to evaluate the olfactory function of mice. The changes of IBA1, GFAP, P2X7R, IL-1ß, IL-1Ra, and CASPASE 1 were detected by quantitative polymerase chain reaction and western blotting. The levels of adenosine triphosphate (ATP) were determined by the commercialized kit. The morphological changes of microglia were assessed using immunofluorescence staining and Sholl analysis. Findings showed that AR-related OD was associated with OB microglia-mediated imbalance between IL-1ß and IL-1Ra. Treatment with BBG improved the olfactory function in AR mice with restoring the balance between IL-1ß and IL-1Ra. In vitro, the conditioned medium obtained after HNEpC treatment with Der p1 could activate HMC3 to arise inflammatory reaction basing on "ATP-P2X7R-Caspase 1" axis, while inhibition of its P2X7R suppressed the reaction. In brief, microglial P2X7R in OB is a direct effector molecule in AR-related OD and inhibition of it may be a new strategy for the treatment of AR-related OD.


Assuntos
Transtornos do Olfato , Receptores Purinérgicos P2X7 , Rinite Alérgica , Animais , Camundongos , Trifosfato de Adenosina , Caspase 1 , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Proteína Antagonista do Receptor de Interleucina 1 , Microglia , Bulbo Olfatório , Ovalbumina , Receptores Purinérgicos P2X7/genética , Rinite Alérgica/complicações
20.
Mediators Inflamm ; 2023: 1265449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091903

RESUMO

Allergic rhinitis (AR) is a chronic upper airway immune-inflammation response mediated by immunoglobulin E (IgE) to allergens and can seriously affect the quality of life and work efficiency. Previous studies have shown that interleukin-1ß (IL-1ß) acts as a key cytokine to participate in and promote the occurrence and development of allergic diseases. It has been proposed that IL-1ß may be a potential biomarker of AR. However, its definitive role and potential mechanism in AR have not been fully elucidated, and the clinical sample collection and detection methods were inconsistent among different studies, which have limited the use of IL-1ß as a clinical diagnosis and treatment marker for AR. This article systematically summarizes the research advances in the roles of IL-1ß in allergic diseases, focusing on the changes of IL-1ß in AR and the possible interventions. In addition, based on the findings by our team, we provided new insights into the use of IL-1ß in AR diagnosis and treatment, in an attempt to further promote the clinical application of IL-1ß in AR and other allergic diseases.


Assuntos
Qualidade de Vida , Rinite Alérgica , Humanos , Animais , Interleucina-1beta , Rinite Alérgica/terapia , Alérgenos , Citocinas , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...