Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34109242

RESUMO

ND-L02-s0201 is a lipid nanoparticle encapsulating an siRNA which inhibits expression of heat shock protein 47 (HSP47), a collagen-specific chaperone. Accumulated evidence demonstrates a close association between increased level of HSP47 and excessive accumulation of collagen in fibrotic diseases. Our objective was to test ND-L02-s0201 efficacy in preclinical lung fibrosis models and characterise the downstream histological and functional consequences of inhibiting the expression of HSP47. Comprehensive optimisation and characterisation of bleomycin (BLM) and silica-induced rat lung fibrosis models were conducted, which ensured progressive pathological changes were sustained throughout the study during evaluation of the anti-fibrotic potential of ND-L02-s0201. In the BLM model, we demonstrated dose-dependent and statistically significant reduction in the relative lung weight, collagen deposition and histology, and fibrosis scores following ND-L02-s0201 treatment. Lung tissue mRNA profiling demonstrated that 11 out of 84 fibrosis-relevant genes were upregulated following BLM induction and were downregulated by approximately 4.5-fold following ND-L02-s0201 treatment. Epithelial-mesenchymal transition was characterised in the BLM model following ND-L02-s0201 treatment. Cell enrichment demonstrated that myofibroblasts contained the highest HSP47 mRNA expression. BLM led to more than a five-fold increase in myofibroblasts and ND-L02-s0201 treatment reduced the myofibroblasts to sham levels. Statistically significant improvement in lung function was noted in the BLM model which was determined by running endurance capacity using a 7-minute treadmill test. Comparable anti-fibrotic efficacy was also observed in the silica model. Results from two robust chronic rodent models of pulmonary fibrosis demonstrated significant anti-fibrotic effects and improved lung function which support the evaluation of ND-L02-s0201 in subjects with idiopathic pulmonary fibrosis.

2.
Brain Res ; 1423: 1-9, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000082

RESUMO

Adiponectin can act in the brain to increase energy expenditure and reduce body weight by mechanisms not entirely understood. We found that adiponectin type 1 and type 2 receptors (AdipoR1 and AdipoR2) are expressed in warm sensitive neurons of the hypothalamic preoptic area (POA) which play a critical role in the regulation of core body temperature (CBT) and energy balance. Thus, we tested the ability of adiponectin to influence CBT in wild-type mice and in mice deficient for AdipoR1 or AdipoR2. Local injection of adiponectin into the POA induced prolonged elevation of core body temperature and decreased respiratory exchange ratio (RER) indicating that increased energy expenditure is associated with increased oxidation of fat over carbohydrates. In AdipoR1 deficient mice, the ability of adiponectin to raise CBT was significantly blunted and its ability to decrease RER was completely lost. In AdipoR2 deficient mice, adiponectin had only diminished hyperthermic effects but reduced RER similarly to wild type mice. These results indicate that adiponectin can contribute to energy homeostasis by regulating CBT by direct actions on AdipoR1 and R2 in the POA.


Assuntos
Adiponectina/farmacologia , Temperatura Corporal/efeitos dos fármacos , Área Pré-Óptica/citologia , Receptores de Adiponectina/metabolismo , Células Receptoras Sensoriais/fisiologia , Análise de Variância , Animais , Calorimetria Indireta , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Adiponectina/deficiência , Células Receptoras Sensoriais/efeitos dos fármacos , Telemetria , Sensação Térmica/efeitos dos fármacos , Sensação Térmica/fisiologia
3.
Proc Natl Acad Sci U S A ; 107(34): 15229-34, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20660766

RESUMO

Galanin receptors type 1 (GalR1) and/or type 2 (GalR2) represent unique pharmacological targets for treatment of seizures and epilepsy. Previous studies have shown that the endogenous peptide ligand galanin exerts powerful anticonvulsant effect through activation of these two G protein-coupled receptors, which are highly expressed in the temporal lobe of rodent brain. Here we report the characterization of a putative GalR2-positive allosteric modulator CYM2503. CYM2503 potentiated the galanin-stimulated IP1 accumulation in HEK293 cells stably expressing GalR2 receptor, whereas it exhibited no detectable affinity for the (125)I galanin-binding site of GalR2 receptor, an effect consistent with that of a positive allosteric modulator. In the rat Li-pilocarpine status epilepticus model, CYM2503, injected intraperitoneally, increased the latency to first electrographic seizure and the latency to first stage 3 behavioral seizure, decreased the latency to the establishment of status epilepticus, and dramatically decreased the mortality. In a Li-pilocarpine seizure model in mice, CYM2503 increased the latency to first electrographic seizure and decreased the total time in seizure. CYM2503 also attenuated electroshock-induced seizures in mice. Thus, CYM2503 provides a starting point for the development of anticonvulsant therapy using the galanin R2 receptor as target.


Assuntos
Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Dipeptídeos/farmacologia , Quinolonas/farmacologia , Receptor Tipo 2 de Galanina/agonistas , Regulação Alostérica , Animais , Linhagem Celular , Modelos Animais de Doenças , Eletrochoque , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Convulsões/tratamento farmacológico , Convulsões/etiologia , Transdução de Sinais/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA