Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134682, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38795487

RESUMO

The high osmolarity glycerol 1 mitogen-activated protein kinase (Hog1-MAPK) cascade genes are important for diverse biological processes. The activated Hog1 upon multiple environmental stress stimuli enters into the nucleus where it directly phosphorylates transcription factors to regulate various physiological processes in phytopathogenic fungi. However, their roles have not been well-characterized in Fusarium verticillioides. In this study, FvHog1 is identified and functionally analyzed. The findings reveal that the phosphorylation level and nuclear localization of FvHog1 are increased in Fumonisin B1 (FB1)-inducing condition to regulate the expression of FB1 biosynthesis FUM genes. More importantly, the deletion mutants of Hog1-MAPK pathway show increased sensitivity to Ca2+ stress and elevated intracellular Ca2+ content. The phosphorylation level and nuclear localization of FvHog1 are increased with Ca2+ treatment. Furthermore, our results show that FvHog1 can directly phosphorylate Ca2+-responsive zinc finger transcription factor 1 (FvCrz1) to regulate Ca2+ homeostasis. In conclusion, our findings indicate that FvHog1 is required for FB1 biosynthesis, pathogenicity and Ca2+ homeostasis in F. verticillioides. It provides a theoretical basis for effective prevention and control maize ear and stalk rot disease.

2.
J Hazard Mater ; 473: 134576, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759405

RESUMO

The mycotoxigenic fungus Fusarium verticillioides is a common pathogen of grain and medicine that contaminates the host with fumonisin B1 (FB1) mycotoxin, poses serious threats to human and animal health. Therefore, it is crucial to unravel the regulatory mechanisms of growth, and pathogenicity of F. verticillioides. Mbp1 is a component of the MluI cell cycle box binding factor complex and acts as an APSES-type transcription factor that regulates cell cycle progression. However, no information is available regarding its role in F. verticillioides. In this study, we demonstrate that FvMbp1 interacts with FvSwi6 that acts as the cell cycle transcription factor, to form the heteromeric transcription factor complexes in F. verticillioides. Our results show that ΔFvMbp1 and ΔFvSwi6 both cause a severe reduction of vegetative growth, conidiation, and increase tolerance to diverse environmental stresses. Moreover, ΔFvMbp1 and ΔFvSwi6 dramatically decrease the virulence of the pathogen on the stalk and ear of maize. Transcriptome profiling show that FvMbp1-Swi6 complex co-regulates the expression of genes associated with multiple stress responses. These results indicate the functional importance of the FvMbp1-Swi6 complex in the filamentous fungi F. verticillioides and reveal a potential target for the effective prevention and control of Fusarium diseases.

3.
Nat Commun ; 15(1): 2559, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519521

RESUMO

Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.


Assuntos
Magnaporthe , Oryza , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genética , Transporte Biológico , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Genome Biol ; 25(1): 67, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468348

RESUMO

BACKGROUND: Bromo-adjacent homology-plant homeodomain domain containing protein 1 (BP1) is a reader of histone post-translational modifications in fungi. BP1 recognizes trimethylation of lysine 27 in histone H3 (H3K27me3), an epigenetic hallmark of gene silencing. However, whether and how BP1 participates in transcriptional repression remains poorly understood. RESULTS: We report that BP1 forms phase-separated liquid condensates to modulate its biological function in Fusarium graminearum. Deletion assays reveal that intrinsically disordered region 2 (IDR2) of BP1 mediates its liquid-liquid phase separation. The phase separation of BP1 is indispensable for its interaction with suppressor of Zeste 12, a component of polycomb repressive complex 2. Furthermore, IDR2 deletion abolishes BP1-H3K27me3 binding and alleviates the transcriptional repression of secondary metabolism-related genes, especially deoxynivalenol mycotoxin biosynthesis genes. CONCLUSIONS: BP1 maintains transcriptional repression by forming liquid-liquid phase-separated condensates, expanding our understanding of the relationship between post-translational modifications and liquid-liquid phase separation.


Assuntos
Histonas , Separação de Fases , Histonas/metabolismo , Expressão Gênica , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional
5.
Front Microbiol ; 12: 765398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867896

RESUMO

Putrescine, spermidine, and spermine are the most common natural polyamines. Polyamines are ubiquitous organic cations of low molecular weight and have been well characterized for the cell function and development processes of organisms. However, the physiological functions of polyamines remain largely obscure in plant pathogenic fungi. Fusarium graminearum causes Fusarium head blight (FHB) and leads to devastating yield losses and quality reduction by producing various kinds of mycotoxins. Herein, we genetically analyzed the gene function of the polyamine biosynthesis pathway and evaluated the role of the endogenous polyamines in the growth, development, and virulence of F. graminearum. Our results found that deletion of spermidine biosynthesis gene FgSPE3 caused serious growth defects, reduced asexual and sexual reproduction, and increased sensitivity to various stresses. More importantly, ΔFgspe3 exhibited significantly decreased mycotoxin deoxynivalenol (DON) production and weak virulence in host plants. Additionally, the growth and virulence defects of ΔFgspe3 could be rescued by exogenous application of 5 mM spermidine. Furthermore, RNA-seq displayed that FgSpe3 participated in many essential biological pathways including DNA, RNA, and ribosome synthetic process. To our knowledge, these results indicate that spermidine is essential for growth, development, DON production, and virulence in Fusarium species, which provides a potential target to control FHB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...