Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 2878-2881, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824282

RESUMO

We consider a two-dimensional opto-magnomechanical (OMM) system including two optical cavity modes, a magnon mode, a phonon mode, and a collection of two-level atoms. We show how the stationary entanglement between two-level atoms and magnons can be achieved. The presence of two optical cavities leads the atom-magnon entanglement to be achieved in a wide parameter regime. Furthermore, it is shown that one optical cavity can get entangled with magnons, phonons, and the other optical cavity. The entanglement is robust against thermal noise. The work may find applications in building hybrid quantum networks and quantum information processing.

2.
Adv Mater ; : e2401875, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598692

RESUMO

The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices.

3.
Angew Chem Int Ed Engl ; 63(12): e202318369, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38179853

RESUMO

Thermal safety issues of batteries have hindered their large-scale applications. Nonflammable electrolytes improved safety but solvent evaporation above 100 °C limited thermal tolerance, lacking reliability. Herein, fire-tolerant metal-air batteries were realized by introducing solute-in-air electrolytes whose hygroscopic solutes could spontaneously reabsorb the evaporated water solvent. Using Zn/CaCl2 -in-air/carbon batteries as a proof-of-concept, they failed upon burning at 631.8 °C but self-recovered then by reabsorbing water from the air at room temperature. Different from conventional aqueous electrolytes whose irreversible thermal transformation is determined by the boiling points of solvents, solute-in-air electrolytes make this transformation determined by the much higher decomposition temperature of solutes. It was found that stronger intramolecular bonds instead of intermolecular (van der Waals) interactions were strongly correlated to ultra-high tolerance temperatures of our solute-in-air electrolytes, inspiring a concept of non-van der Waals electrolytes. Our study would improve the understanding of the thermal properties of electrolytes, guide the design of solute-in-air electrolytes, and enhance battery safety.

4.
Adv Mater ; 36(16): e2311327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221508

RESUMO

Severe capacity decay under subzero temperatures remains a significant challenge for lithium-ion batteries (LIBs) due to the sluggish interfacial kinetics. Current efforts to mitigate this deteriorating interfacial behavior rely on high-solubility lithium salts (e.g., Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium bis(fluorosulfonyl)imide (LiFSI))-based electrolytes to construct anion participated solvation structures. However, such electrolytes bring issues of corrosion on the current collector and increased costs. Herein, the most commonly used Lithium hexafluorophosphate (LiPF6) instead, to establish a peculiar solvation structure with a high ratio of ion pairs and aggregates by introducing a deshielding NO3 - additive for low-temperature LIBs is utilized. The deshielding anion significantly reduces the energy barrier for interfacial behavior at low temperatures. Benefiting from this, the graphite (Gr) anode retains a high capacity of ≈72.3% at -20 °C, which is far superior to the 32.3% and 19.4% capacity retention of counterpart electrolytes. Moreover, the LiCoO2/Gr full cell exhibits a stable cycling performance of 100 cycles at -20 °C due to the inhibited lithium plating. This work heralds a new paradigm in LiPF6-based electrolyte design for LIBs operating at subzero temperatures.

5.
Adv Mater ; 36(4): e2304900, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37549425

RESUMO

An initial Coulombic efficiency (ICE) higher than 90% is crucial for industrial lithium-ion batteries, but numerous electrode materials are not standards compliant. Lithium trapping, due to i) incomplete solid-state reaction of Li+ generation and ii) sluggish Li+ diffusion, undermines ICE in high-capacity electrodes (e.g., conversion-type electrodes). Current approaches mitigating lithium trapping emphasize ii) nanoscaling (<50 nm) to minimize Li+ diffusion distance, followed by severe solid electrolyte interphase formation and inferior volumetric energy density. Herein, this work accentuates i) instead, to demonstrate that the lithium trapping can be mitigated by boosting the solid-state reaction reactivity. As a proof-of-concept, ternary LiFeO2 anodes, whose discharged products contain highly reactive vacancy-rich Fe nanoparticles, can alleviate lithium trapping and enable a remarkable average ICE of ≈92.77%, much higher than binary Fe2 O3 anodes (≈75.19%). Synchrotron-based techniques and theoretical simulations reveal that the solid-state reconversion reaction for Li+ generation between Fe and Li2 O can be effectively promoted by the Fe-vacancy-rich local chemical environment. The superior ICE is further demonstrated by assembled pouch cells. This work proposes a novel paradigm of regulating intrinsic solid-state chemistry to ameliorate electrochemical performance and facilitate industrial applications of various advanced electrode materials.

6.
Adv Mater ; 34(47): e2207016, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134530

RESUMO

Tactile technologies that can identify human body features are valuable in clinical diagnosis and human-machine interactions. Previously, cutting-edge tactile platforms have been able to identify structured non-living objects; however, identification of human body features remains challenging mainly because of the irregular contour and heterogeneous spatial distribution of softness. Here, freestanding and scalable tactile platforms of force-softness bimodal sensor arrays are developed, enabling tactile gloves to identify body features using machine-learning methods. The bimodal sensors are engineered by adding a protrusion on a piezoresistive pressure sensor, endowing the resistance signals with combined information of pressure and the softness of samples. The simple design enables 112 bimodal sensors to be integrated into a thin, conformal, and stretchable tactile glove, allowing the tactile information to be digitalized while hand skills are performed on the human body. The tactile glove shows high accuracy (98%) in identifying four body features of a real person, and four organ models (healthy and pathological) inside an abdominal simulator, demonstrating identification of body features of the bimodal tactile platforms and showing their potential use in future healthcare and robotics.


Assuntos
Tecnologia Háptica , Robótica , Humanos , Tato , Mãos , Fenômenos Mecânicos
7.
Adv Mater ; 34(45): e2206797, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134539

RESUMO

Flexible lithium-ion batteries (LIBs) with high energy density are highly desirable for wearable electronics. However, difficult to achieve excellent flexibility and high energy density simultaneously via the current approaches for designing flexible LIBs. To mitigate the mismatch, mechano-graded electrodes with gradient-distributed maximum allowable strain are proposed to endow high-loading-mass slurry-coating electrodes with brilliant intrinsic flexibility without sacrificing energy density. As a proof-of-concept, the up-graded LiNi1/3 Mn1/3 Co1/3 O2 cathodes (≈15 mg cm-2 , ≈70 µm) and graphite anodes (≈8 mg cm-2 , ≈105 µm) can tolerate an extremely low bending radius of 400 and 600 µm, respectively. Finite element analysis (FEA) reveals that, compared with conventionally homogeneous electrodes, the flexibility of the up-graded electrodes is enhanced by specifically strengthening the upper layer and avoiding crack initiation. Benefiting from this, the foldable pouch cell (required bending radius of ≈600 µm) successfully realizes a remarkable figure of merit (FOM, energy density vs bending radius) of 121.3 mWh cm-3 . Moreover, the up-graded-electrodes-based pouch cells can deliver a stable power supply, even under various deformation modes, such as twisting, folding, and knotting. This work proposes new insights for harmonizing the mechanics and electrochemistry of energy storage devices to achieve high energy density under flexible extremes.

8.
ACS Nano ; 16(6): 8525-8530, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708489

RESUMO

Rate capability is characterized necessarily in almost all battery-related reports, while there is no universal metric for quantitative comparison. Here, we proposed the characteristic time of diffusion, which mainly combines the effects of diffusion coefficients and geometric sizes, as an easy-to-use figure of merit (FOM) to standardize the comparison of fast-charging battery materials. It offers an indicator to rank the rate capabilities of different battery materials and suggests two general methods to improve the rate capability: decreasing the geometric sizes or increasing the diffusion coefficients. Based on this FOM, more comprehensive FOMs for quantifying the rate capabilities of battery materials are expected by incorporating other processes (interfacial reaction, migration) into the current diffusion-dominated electrochemical model. Combined with Peukert's empirical law, it may characterize rate capabilities of batteries in the future.

9.
Adv Mater ; 34(30): e2202877, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638695

RESUMO

Flexible electrodes that are multilayer, multimaterial, and conformal are pivotal for multifunctional wearable electronics. Traditional electronic circuits manufacturing requires substrate-supported transfer printing, which limits their multilayer integrity and device conformability on arbitrary surfaces. Herein, a "shrinkage-assisted patterning by evaporation" (SHAPE) method is reported, by employing evaporation-induced interfacial strain mismatch, to fabricate auto-detachable, freestanding, and patternable electrodes. The SHAPE method utilizes vacuum-filtration of polyaniline/bacterial cellulose (PANI/BC) ink through a masked filtration membrane to print high-resolution, patterned, and multilayer electrodes. The strong interlayer hydrogen bonding ensures robust multilayer integrity, while the controllable evaporative shrinking property of PANI/BC induces mismatch between the strains of the electrode and filtration membrane at the interface and thus autodetachment of electrodes. Notably, a 500-layer substrateless micro-supercapacitor fabricated using the SHAPE method exhibits an energy density of 350 mWh cm-2 at a power density of 40 mW cm-2 , 100 times higher than reported substrate-confined counterparts. Moreover, a digital circuit fabricated using the SHAPE method functions stably on a deformed glove, highlighting the broad wearable applications of the SHAPE method.

10.
Small Methods ; 6(4): e2100920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35243830

RESUMO

Layered ternary oxides LiNix Mny Coz O2 are promising cathode candidates for high-energy lithium-ion batteries (LIBs), but they usually suffer from the severe interfacial parasitic reactions at voltages above 4.3 V versus Li+ /Li, which greatly limit their practical capacities. Herein, using LiNi1/3 Mn1/3 Co1/3 O2 (NMC111) as the model system, a novel high-temperature pre-cycling strategy is proposed to realize its stable cycling in 3.0-4.5 V by constructing a robust cathode/electrolyte interphase (CEI). Specifically, performing the first five cycles of NMC111 at 55 °C helps to yield a uniform CEI layer enriched with fluorine-containing species, Li2 CO3 and poly(CO3 ), which greatly suppresses the detrimental side reactions during extended cycling at 25 °C, endowing the cell with a capacity retention of 92.3% at 1C after 300 cycles, far surpassing 62.0% for the control sample without the thermally tailored CEI. This work highlights the critical role of temperature on manipulating the interfacial properties of cathode materials, opening a new avenue for developing high-voltage cathodes for Li-ion batteries.

11.
Pain Res Manag ; 2022: 7027637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345624

RESUMO

Introduction: There is a common concern about the pain and rehabilitation of the knee after femoral retrograde intramedullary nailing. It is essential for early postoperative knee function required for physical self-maintenance in daily life. And a favorable rehabilitation of the knee usually promotes the quality of life. However, early rehabilitation is absent or insufficient for many patients in postoperative management. This retrospective study aims to evaluate the effect of early knee function improvement in comparison to postoperative fascia iliaca blocking (FIB) and multimodal drug injection (MDI). Patients and Methods. A retrospective analysis of 41 patients receiving femoral fracture treatment with retrograde intramedullary nailing, was performed during 2018-2020. 19 patients were treated with MDI as postoperative analgesia, and 22 patients were treated with FIB. Rehabilitation started on the first postoperative day and lasted for 3 months. Visual analog scale (VAS), the range of motion (ROM) of the knee, and single assessment numeric evaluation (SANE) were assessed. Results: There was no significant difference shown in any of the demographic, fracture types, and operative time. All patients performed regular and voluntary knee rehabilitation and weight-bearing at home following the instruction from the orthopedic staff. Pain in the FIB group at postoperative 1-day was milder (1.7 ± 1.1), compared with that in the MDI group (2.8 ± 1.3, p=0.038). There was a significant difference in VAS between two groups at postoperative 1-month (p=0.031), with a peak score in the FIB group (3.3 ± 0.9). At postoperative 3-month, both groups had pain relief with similar VAS (p=0.465). The ROM of the knee in both groups was continuously improved during the first three months. The SANE in the MDI group was significantly different compared with FIB at 1-month (p=0.026). However, scores of SANE were similar in both groups at 3 months (p=0.541). All patients were identified as fractures union at 9-month or 12-month follow-up. Conclusion: The knee pain was commonly experienced in this series of retrograde femoral nailings. Both MDI and FIB provided immediate and effective pain control after femoral fracture surgery. MDI was more beneficial to continuous pain control and knee rehabilitation in the early follow-up. The extent of pain relief and knee function improvement reached the same level at postoperative 3-month.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fáscia , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Humanos , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
12.
Adv Mater ; 34(14): e2109857, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35129848

RESUMO

High-temperature-induced fire is an extremely serious safety risk in energy storage devices; which can be avoided by replacing their components with nonflammable materials. However; these devices are still destroyed by the high-temperature decomposition; lacking reliability. Here, a fire-tolerant supercapacitor is further demonstrated that recovers after burning with a self-healable "solute-in-air" electrolyte. Using fire-tolerant electrodes and separator with a semiopen device configuration; hygroscopic CaCl2 in the air ("CaCl2 -in-air") is designed as a self-healable electrolyte; which loses its water solvent at high temperatures but spontaneously absorbs water from the air to recover by itself at low temperatures. The supercapacitor is disenabled at 500 °C; while it recovers after cooling in the air. Especially; it even recovers after burning at around 647 °C with enhanced performance. The study offers a self-healing strategy to design high-safety; high-reliability; and fire-tolerant supercapacitors; which inspires a promising way to deal with general fire-related risks.

13.
Adv Mater ; 34(4): e2107439, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34699650

RESUMO

Ion adsorption inside electrified carbon micropores is pivotal for the operation of supercapacitors. Depending on the electrolyte, two main mechanisms have been identified so far, the desolvation of ions in solvents and the formation of superionic states in ionic liquids. Here, it is shown that upon confinement inside negatively charged micropores, transition-metal cations dissolved in water associate to form oligomer species. They are identified using in situ X-ray absorption spectroscopy. The cations associate one with each other via hydroxo bridging, forming ionic oligomers under the synergic effect of spatial confinement and Coulombic screening. The oligomers display sluggish dissociation kinetics and accumulate upon cycling, which leads to supercapacitor capacitance fading. They may be dissolved by applying a positive potential, so an intermittent reverse cycling strategy is proposed to periodically evacuate micropores and revivify the capacitance. These results reveal new insights into ion adsorption and structural evolution with their effects on the electrochemical performance, providing guidelines for designing advanced supercapacitors.

14.
Adv Mater ; 33(10): e2004998, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533156

RESUMO

As the practical capacity of conventional Li-ion batteries (LIBs) approaches the theoretical limit, which is determined by the rocking-chair cycling architecture, a new cycling architecture with higher capacity is highly demanded for future development and electronic applications. Here, a deep-cycling architecture intrinsically with a higher theoretical capacity limit than conventional rocking-chair cycling architecture is developed, by introducing a follow-up cycling process to contribute more capacity. The deep-cycling architecture makes full use of movable ions in both of the electrolyte and electrodes for energy storage, rather than in either the electrolyte or the electrodes. Taking LiMn2 O4 -mesocarbon microbeads (MCMB)/Li cells as a proof-of-concept, 57.7% more capacity is obtained. Moreover, the capacity retention is as high as 84.4% after 2000 charging/discharging cycles. The deep-cycling architecture offers opportunities to break the theoretical capacity limit of conventional LIBs and makes high demands for new-type of cathode materials, which will promote the development of next-generation energy storage devices.

15.
Small ; 16(30): e2002094, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32529784

RESUMO

Silicon anode with extremely high theoretical specific capacity (≈4200 mAh g-1 ), experiences huge volume changes during Li-ion insertion and extraction, causing mechanical fracture of Si particles and the growth of a solid-electrolyte interface (SEI), which results in a rapid capacity fading of Si electrodes. Herein, a mechanically reinforced localized structure is designed for carbon-coated Si nanoparticles (C@Si) via elongated TiO2 nanotubes networks toward stabilizing Si electrode via alleviating mechanical strain and stabilizing the SEI layer. Benefited from the rational localized structure design, the carbon-coated Si nanoparticles/TiO2 nanotubes composited electrode (C@Si/TiNT) exhibits an ideal electrode thickness swelling, which is lower than 1% after the first cycle and increases to about 6.6% even after 1600 cycles. While for traditional C@Si/carbon nanotube composited electrode, the initial swelling ratio is about 16.7% and reaches ≈190% after 1600 cycles. As a result, the C@Si/TiNT electrode exhibits an outstanding capacity of 1510 mAh g-1 at 0.1 A g-1 with high rate capability and long-time cycling performance with 95% capacity retention after 1600 cycles. The rational design on mechanically reinforced localized structure for silicon electrode will provide a versatile platform to solve the current bottlenecks for other alloyed-type electrode materials with large volume expansion toward practical applications.

16.
Adv Mater ; 32(19): e2000496, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239556

RESUMO

High-energy Li-rich layered cathode materials (≈900 Wh kg-1 ) suffer from severe capacity and voltage decay during cycling, which is associated with layered-to-spinel phase transition and oxygen redox reaction. Current efforts mainly focus on surface modification to suppress this unwanted structural transformation. However, the true challenge probably originates from the continuous oxygen release upon charging. Here, the usage of dielectric polarization in surface coating to suppress the oxygen evolution of Li-rich material is reported, using Mg2 TiO4 as a proof-of-concept material. The creation of a reverse electric field in surface layers effectively restrains the outward migration of bulk oxygen anions. Meanwhile, high oxygen-affinity elements of Mg and Ti well stabilize the surface oxygen of Li-rich material via enhancing the energy barrier for oxygen release reaction, verified by density functional theory simulation. Benefited from these, the modified Li-rich electrode exhibits an impressive cyclability with a high capacity retention of ≈81% even after 700 cycles at 2 C (≈0.5 A g-1 ), far superior to ≈44% of the unmodified counterpart. In addition, Mg2 TiO4 coating greatly mitigates the voltage decay of Li-rich material with the degradation rate reduced by ≈65%. This work proposes new insights into manipulating surface chemistry of electrode materials to control oxygen activity for high-energy-density rechargeable batteries.

17.
Adv Mater ; 31(52): e1906156, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31693266

RESUMO

Oxygen vacancies play crucial roles in defining physical and chemical properties of materials to enhance the performances in electronics, solar cells, catalysis, sensors, and energy conversion and storage. Conventional approaches to incorporate oxygen defects mainly rely on reducing the oxygen partial pressure for the removal of product to change the equilibrium position. However, directly affecting reactants to shift the reaction toward generating oxygen vacancies is lacking and to fill this blank in synthetic methodology is very challenging. Here, a strategy is demonstrated to create oxygen vacancies through making the reaction energetically more favorable via applying interfacial strain on reactants by coating, using TiO2 (B) as a model system. Geometrical phase analysis and density functional theory simulations verify that the formation energy of oxygen vacancies is largely decreased under external strain. Benefiting from these, the obtained oxygen-deficient TiO2 (B) exhibits impressively high level of capacitive charge storage, e.g., ≈53% at 0.5 mV s-1 , far surpassing the ≈31% of the unmodified counterpart. Meanwhile, the modified electrode shows significantly enhanced rate capability delivering a capacity of 112 mAh g-1 at 20 C (≈6.7 A g-1 ), ≈30% higher than air-annealed TiO2 and comparable to vacuum-calcined TiO2 . This work heralds a new paradigm of mechanical manipulation of materials through interfacial control for rational defect engineering.

18.
J Am Chem Soc ; 141(36): 14038-14042, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31448603

RESUMO

Sluggish interfacial kinetics leading to considerable loss of energy and power capabilities at subzero temperatures is still a big challenge to overcome for Li-ion batteries operating under extreme environmental conditions. Herein, using LiMn2O4 as the model system, we demonstrated that nickel surface doping to construct a new interface owning lower charge transfer energy barrier, could effectively facilitate the interfacial process and inhibit the capacity loss with decreased temperature. Detailed investigations on the charge transfer process via electrochemical impedance spectroscopy and density functional theory calculation, indicate that the interfacial chemistry tuning could effectively lower the activation energy of charge transfer process by nearly 20%, endowing the cells with ∼75.4% capacity at -30 °C, far surpassing the hardly discharged unmodified counterpart. This control of surface chemistry to tune interfacial dynamics proposes insights and design ideas for batteries to well survive under thermal extremes.

19.
Angew Chem Int Ed Engl ; 58(11): 3521-3526, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30624844

RESUMO

MoS2 holds great promise as high-rate electrode for lithium-ion batteries since its large interlayer can allow fast lithium diffusion in 3.0-1.0 V. However, the low theoretical capacity (167 mAh g-1 ) limits its wide application. Here, by fine tuning the lithiation depth of MoS2 , we demonstrate that its parent layered structure can be preserved with expanded interlayers while cycling in 3.0-0.6 V. The deeper lithiation and maintained crystalline structure endows commercially micrometer-sized MoS2 with a capacity of 232 mAh g-1 at 0.05 A g-1 and circa 92 % capacity retention after 1000 cycles at 1.0 A g-1 . Moreover, the enlarged interlayers enable MoS2 to release a capacity of 165 mAh g-1 at 5.0 A g-1 , which is double the capacity obtained under 3.0-1.0 V at the same rate. Our strategy of controlling the lithiation depth of MoS2 to avoid fracture ushers in new possibilities to enhance the lithium storage of layered transition-metal dichalcogenides.

20.
Adv Mater ; 30(50): e1805468, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306649

RESUMO

Traditional stretchable supercapacitors, possessing a thin electrode and a 2D shape, have limited areal specific areal capacitance and are incompatible with 3D wearables. To overcome the limitations of 2D stretchable supercapacitors, it is highly desirable to develop 3D stretchable supercapacitors with higher mass loading and customizable shapes. In this work, a new 3D stretchable supercapacitor inspired by a honeycomb lantern based on an expandable honeycomb composite electrode composed of polypyrrole/black-phosphorous oxide electrodeposited on carbon nanotube film is reported. The 3D stretchable supercapacitors possessing device-thickness-independent ion-transport path and stretchability can be crafted into customizable device thickness for enhancing the specific areal energy storage and integrability with wearables. Notably, a 1.0 cm thick rectangular-shaped supercapacitor shows enhanced specific areal capacitance of 7.34 F cm-2 , which is about 60 times higher than that of the original 2D supercapacitor (120 mF cm-2 ) at a similar discharge rate. The 3D supercapacitor can also maintain a capacitance ratio of 95% even under the reversible strain of 2000% after 10 000 stretch-and-release cycles, superior to state-of-the-art stretchable supercapacitors. The enhanced specific areal energy storage and the customizablility in shapes of the 3D stretchable supercapacitors show immense promise in a wide range of applications in stretchable and wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...