Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Jpn J Infect Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38417866

RESUMO

Acquired immune deficiency syndrome (AIDS) is susceptible to numerous complications such as sepsis and acute kidney injury (AKI), leading to adverse outcomes. Continuous renal replacement therapy (CRRT) is becoming increasingly popular in the treatment of sepsis and AKI. This study aimed to verify the effectiveness of CRRT in the treatment of AIDS with sepsis and AKI, to provide new directions for the treatment of severe AIDS. Data of 74 people with AIDS, sepsis and AKI were collected. They were divided into CRRT and non-CRRT groups. There was no difference in indicators between the two groups at admission. Vital signs, PH, serum potassium, renal function, blood lactate, APACHE II score, and SOFA score in CRRT group demonstrated significant improvements over those in the non-CRRT group both 24 and 72 hours after admission (P<0.05). Level of Interleukin 6 and procalcitonin declined more significantly in CRRT group 72 hours after admission (P<0.05). CRRT group had a higher 28-day survival rate (P<0.05). CRRT improves the clinical indicators and increases the short-term survival rate of people with AIDS, sepsis and AKI.

2.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419081

RESUMO

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Assuntos
Diterpenos do Tipo Caurano , Hipertermia Induzida , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Neoplasias Nasofaríngeas/patologia , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
3.
Aging (Albany NY) ; 15(10): 4391-4410, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37219449

RESUMO

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.


Assuntos
Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Camundongos Nus , Linhagem Celular Tumoral , Nasofaringe/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
4.
Kaohsiung J Med Sci ; 39(7): 665-674, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052185

RESUMO

Acute lung injury (ALI) is an adverse disease of the respiratory system, and one of its prevalent causes is sepsis induction. Cell pyroptosis facilitates the progression of ALI and lncRNAs play critical roles in ALI. Thus, this research seeks to investigate the specific mechanism of NEAT1 in sepsis-ALI.BEAS-2B cells were exposed to lipopolysaccharide (LPS) to construct a cell model of sepsis-induced ALI. The gene and protein expression were assessed using qRT-PCR and western blot. Cell viability was identified by CCK-8. Cell death was discovered using PI staining. The secretion of IL-1ß and IL-18 was examined using ELISA. The interconnections among NEAT1, miR-26a-5p, and ROCK1 were confirmed using starbase, luciferase assay, and RIP.LPS treatment augmented NEAT1 and ROCK1 levels while mitigating miR-26a-5p level in BEAS-2B cells. Additionally, LPS treatment facilitated cell death and cell pyroptosis, whereas NEAT1 silencing could reverse these effects in BEAS-2B cells. Mechanistically, NEAT1 positively mediated ROCK1 expression by targeting miR-26a-5p. Furthermore, miR-26a-5p inhibitor offset NEAT1 depletion-mediated suppressive effects on cell death and cell pyroptosis. ROCK1 upregulation decreased the inhibitory impacts produced by miR-26a-5p overexpression on cell death and cell pyroptosis. Our outcomes demonstrated NEAT1 could reinforce LPS-induced cell death and cell pyroptosis by repressing the miR-26a-5p/ROCK1 axis, thereby worsening ALI caused by sepsis. Our data indicated NEAT1, miR-26a-5p, and ROCK1 might be biomarkers and target genes for relieving sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , RNA Longo não Codificante , Sepse , Humanos , MicroRNAs/metabolismo , Lipopolissacarídeos/toxicidade , RNA Longo não Codificante/fisiologia , Piroptose/genética , Sepse/genética , Sepse/complicações , Apoptose , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
5.
China Tropical Medicine ; (12): 556-2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-979753

RESUMO

@#Abstract: To explore the clinical characteristics, diagnosis and treatment of imported severe malaria and COVID-19 co-infection cases, and to provide scientific basis for epidemic prevention and control measures. The epidemiological characteristics, clinical manifestations, laboratory tests, treatment process and prognosis of 4 cases of severe malaria and COVID-19 co-infection with confirmed diagnosis were analyzed retrospectively. Four cases of severe malaria were African returnees of the same batch, male, aged 40-54 years old, with the same journey track. They all had African work and life history and acute onset. The main clinical manifestations were fever (4/4), chills (3/4), chills (3/4), nausea and vomiting (3/4), diarrhea (4/4), fatigue and anorexia (4/4). Two cases had headache and dizziness, confusion, muscle aches, two cases had cough, one cases had sputum, sore throat and runny urine. All 4 cases were confirmed by positive nucleic acid detection of the new coronavirus (2019-nCOV) in throat swabs. Plasmodium falciparum was found by microscopic examination of peripheral blood smears of all patients, and all of them were consistent with high altitude helminthiasis. All cases were accompanied by abnormal liver function and severe hypoproteinemia, two cases were hyperbilirubinemia, three cases were dyslipidemia, three cases were involved in abnormal tertiary hemogram with different degrees of elevation of procalcitonin, two cases were lactic acid poisoning, and one case was hypoglycemia. One case showed viral pneumonia on chest CT. All cases were treated individually according to the different conditions and were discharged after improvement, and were rechecked for 2019-nCOV nucleic acid and microscopic examination of blood smear negative for Plasmodium.During the global COVID-19 epidemic, the emergence of coinfection cases of con-infection of imported malaria parasites and severe acuterespiratory syndrome coronavirus 2 (SARS-CoV-2) makes the clinical diagnosis and treatment more complicated. It is important to establish the awareness of simultaneous prevention and diagnosis of COVID-19 and malaria for local prevention and control and early warning of severe cases, and timely and effective formulation of treatment plan to improve the comprehensive treatment efficiency.

6.
Aging (Albany NY) ; 14(10): 4445-4458, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575836

RESUMO

To master the technology of reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs), which will lay a good foundation for setting up a technology platform on reprogramming human cancer cells into iPSCs. Mouse iPSCs (i.e., Oct4-GFP miPSCs) was successfully generated from mouse embryonic fibroblasts (MEFs) harboring Oct4-EGFP transgene by introducing four factors, Oct4, Sox2, c-Myc and Klf4, under mESC (Murine embryonic stem cells) culture conditions. Oct4-GFP miPSCs were similar to mESCs in morphology, proliferation, mESC-specific surface antigens and gene expression. Additionally, Oct4-GFP miPSCs could be cultured in suspension to form embryoid bodies (EBs) and differentiate into cell types of the three germ layers in vitro. Moreover, Oct4-GFP miPSCs could develop to teratoma and chimera in vivo. Unlike cell cycle distribution of MEFs, Oct4-GFP miPSCs are similar to mESCs in the cell cycle structure which consists of higher S phase and lower G1 phase. More importantly, our data demonstrated that MEFs harboring Oct4-EGFP transgene did not express GFP, until they were reprogrammed to the pluripotent stage (iPSCs), while the GFP expression was progressively lost when these pluripotent Oct4-GFP miPSCs exposed to EB-mediated differentiation conditions, suggesting the pluripotency of Oct4-GFP miPSCs can be real-time monitored over long periods of time via GFP assay. Altogether, our findings demonstrate that Oct4-GFP miPSC line is successfully established, which will lay a solid foundation for setting up a technology platform on reprogramming cancer cells into iPSCs. Furthermore, this pluripotency reporter system permits the long-term real-time monitoring of pluripotency changes in a live single-cell, and its progeny.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular/genética , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos
7.
Aging (Albany NY) ; 13(17): 21497-21512, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491904

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a highly malignant gastrointestinal cancer with a high recurrence rate and poor prognosis. Although N6-methyladenosine (m6A), the most abundant epitranscriptomic modification of mRNAs, has been implicated in several cancers, little is known about its participation in ESCC progression. We found reduced expression of ALKBH5, an m6A demethylase, in ESCC tissue specimens with a more pronounced effect in T3-T4, N1-N3, clinical stages III-IV, and histological grade III tumors, suggesting its involvement in advanced stages of ESCC. Exogenous expression of ALKBH5 inhibited the in vitro proliferation of ESCC cells, whereas depletion of endogenous ALKBH5 markedly enhanced ESCC cell proliferation in vitro. This suggests ALKBH5 exerts anti-proliferative effects on ESCC growth. Furthermore, ALKBH5 overexpression suppressed tumor growth of Eca-109 cells in nude mice; conversely, depletion of endogenous ALKBH5 accelerated tumor growth of TE-13 cells in vivo. The growth-inhibitory effects of ALKBH5 overexpression are partly attributed to a G1-phase arrest. In addition, ALKBH5 overexpression reduced the in vitro migration and invasion of ESCC cells. Altogether, our findings demonstrate that the loss of ALKBH5 expression contributes to ESCC malignancy.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Adulto , Idoso , Animais , Carcinogênese , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Esôfago/metabolismo , Esôfago/patologia , Feminino , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Aging (Albany NY) ; 13(17): 21155-21190, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517344

RESUMO

In this study, we investigated the role of embryonic gene Cripto-1 (CR-1) in hepatocellular carcinoma (HCC) using hepatocyte-specific CR-1-overexpressing transgenic mice. The expression of truncated 1.7-kb CR-1 transcript (SF-CR-1) was significantly higher than the full-length 2.0-kb CR-1 transcript (FL-CR-1) in a majority of HCC tissues and cell lines. Moreover, CR-1 mRNA and protein levels were significantly higher in HCC tissues than adjacent normal liver tissues. Hepatocyte-specific over-expression of CR-1 in transgenic mice enhanced hepatocyte proliferation after 2/3 partial hepatectomy (2/3 PHx). CR-1 over-expression significantly increased in vivo xenograft tumor growth of HCC cells in nude mice and in vitro HCC cell proliferation, migration, and invasion. CR-1 over-expression in the transgenic mouse livers deregulated HCC-related signaling pathways such as AKT, Wnt/ß-catenin, Stat3, MAPK/ERK, JNK, TGF-ß and Notch, as well as expression of HCC-related genes such as CD5L, S100A8, S100A9, Timd4, Orm2, Orm3, PDK4, DMBT1, G0S2, Plk2, Plk3, Gsta1 and Gsta2. However, histological signs of precancerous lesions, hepatocyte dysplasia or HCC formation were not observed in the livers of 3-, 6- or 8-month-old hepatocyte-specific CR-1-overexpressing transgenic mice. These findings demonstrate that liver-specific CR-1 overexpression in transgenic mice deregulates signaling pathways and genes associated with HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas Ligadas por GPI/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Epidérmico/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Nus , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Neoplasias Experimentais , Especificidade de Órgãos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Transdução de Sinais , Regulação para Cima
9.
J Cancer ; 12(15): 4463-4477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149910

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.

10.
J Cancer ; 12(11): 3325-3334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976742

RESUMO

Objective: To investigate the effects of Maytenus compound on the proliferation of hepatocellular carcinoma (HCC) cells in vitro and in vivo and to explore the underlying mechanism. Methods: The half maximal inhibitory concentration (IC50) values of Maytenus compound in HepG2 and BEL-7402 cells were determined by the MTS assay. HepG2 and BEL-7402 cells were treated with different concentrations of Maytenus compound. MTS assays, colony formation assays and cell cycle analyses were performed to clarify the inhibitory effect of Maytenus compound on the proliferation of HepG2 and BEL-7402 cells in vitro. After subcutaneous injection of HepG2 cells, nude mice were randomly divided into a vehicle control group and a drug intervention group, which were intragastrically administered ddH2O or Maytenus compound, respectively. The inhibitory effect of Maytenus compound on the proliferation of HepG2 cells in vivo was analyzed using subcutaneous tumor growth curves, tumor weight, the tumor growth inhibition rate and the immunohistochemical detection of BrdU-labeled cells in S phase. The organ toxicity of Maytenus compound was initially evaluated by comparing the weight difference and organ index of the two groups of nude mice. The main proteins in the EGFR-PI3K-AKT signaling pathway were detected by Western blot after Maytenus compound intervention in vivo and in vitro. Results: Maytenus compound showed favorable antiproliferation activity against HepG2 and BEL-7402 cells with IC50 values of 79.42±11.71 µg/mL and 78.48±8.87 µg/mL, respectively. MTS assays, colony formation assays and cell cycle analyses showed that Maytenus compound at different concentration gradients within the IC50 concentration range significantly suppressed the proliferation of HepG2 and BEL-7402 cells in vitro and inhibited cell cycle progression from G1 to S phase. Additionally, Maytenus compound, at an oral dose of 2.45 g/kg, dramatically inhibited, without obvious organ toxicity, the proliferation of subcutaneous tumors formed by HepG2 cells in nude mice. In addition, the tumor growth inhibition rate for Maytenus compound was 66.94%. Furthermore, Maytenus compound inhibited the proliferation of liver orthotopic transplantation tumors in nude mice. Western blot analysis showed that Maytenus compound significantly downregulated the expression of p-EGFR, p-PI3K, and p-AKT and upregulated the expression of p-FOXO3a, p27, and p21 in vivo and in vitro. Conclusion: Maytenus compound significantly inhibited the proliferation of HCC cells in vitro and in vivo. The downregulation of the EGFR-PI3K-AKT signaling pathway and subsequent inhibition of cell cycle progression from G1 to S phase is one of the possible mechanisms. Maytenus compound has a high tumor growth inhibition rate and has no obvious organ toxicity, which may make it a potential anti-HCC drug, but the results from this study need to be confirmed by further clinical trials in HCC patients.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(5): 1304-8, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23905341

RESUMO

In the present study, bismuth tungstate (Bi2WO6) nanocrystals were prepared by the hydrothermal method using bismuth nitrate (Bi(NO3)3 x 5H2O) and sodium tungstate (Na2WO4 x 2H2O) as raw materials at 150 degrees C for 24 h. The powder X-ray diffraction (XRD) pattern shows that the Bi2WO6 nanocrystals belong to the orthorhombic phase with calculated lattice constants a = 5.457 angstroms, b = 16.435 angstroms and c = 5.438 angstroms. The X-ray photoelectron spectra (XPS) indicate that the obtained Bi2WO6 was pure. The photocatalytic activity of the nanocrystal prepared by using water, N, N-dimethyl formamide (DMF) and ethylene glycol (EG) as the solvent respectively were studied for the degradation of rhodamine B under visible light irradiation. The results show that Bi2WO6 sample obtained in EG has the best photocatalytic activity mainly owing to good dispersion, small particle size and broader spectrum response for visible light. In addition, the influence of pH and surfactant on the Bi2WO6 photocatalytic activity was also studied. The results show that Bi2WO6 sample has better photocatalytic activity when prepared at 150 degrees C and pH 1.0 with sodium dodecylsulfate (SDS) as the surfactant. The photoluminescence (PL) spectra of the prepared Bi2WO6 reveal that the recombination of photo-generated electrons and holes was inhibited over Bi2WO6 prepared with SDS and thus its photocatalytic ability was enhanced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...