Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005034

RESUMO

To assess the freeze-thaw (F-T) durability of coal gangue pervious concrete (CGPC) in different F-T cycle media (water, 3.5 wt% NaCl solution), experimental studies on 36 groups of cube specimens and 6 groups of prismatic specimens were carried out, with designed porosity, F-T cycling media, and F-T failure times as variables. The changes in apparent morphology, mass, compressive behavior, relative dynamic elastic modulus, and permeability coefficient have been analyzed in detail. To predict the compressive strength after F-T cycles, a GM (1,1) model based on the grey system theory was developed and further improved into a more accurate grey residual-Markov model. The results reported that the cement slurry and coal gangue aggregates (CGAs) on the specimen surface continued to fall off as F-T cycles increased, and, finally, the weak point was fractured. Meanwhile, the decrease in compressive behavior and relative dynamic elastic modulus was gentle in the early phase of F-T cycles, and they gradually became faster in the later stage, showing a parabolic downward trend. The permeability coefficient increased gradually. When F-T failure occurred, specimen mass dropped precipitously. The F-T failure of CGPC was more likely to occur in 3.5 wt% NaCl solution, and the F-T failure times of samples were 25 times earlier than that of water. This study lays the foundation for an engineering application and provides a basis for the large-scale utilization of CGPC.

2.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770238

RESUMO

Recycling coal gangue as aggregate to produce concrete in situ is the most effective way to solve the problem of deposited coal gangue in mines. Nevertheless, the mine environment underground is rich in sulfate ions, posing a threat to the durability of coal gangue concrete (CGC). Hence, the degradation process of sulfate-attacked CGC is investigated. A series of tests is performed to evaluate its variation law of mass, dynamic elastic modulus, compressive strength and sulfate ion distribution. Meanwhile, the microstructure and phases of sulfate-attacked CGC are identified by scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the residual compressive strength ratio of CGC is higher than that of normal concrete after a 240 d sulfate attack, implying a superior sulfate resistance for CGC. Additionally, the higher the sulfate concentration, the more severe the degradation. Except for the secondary hydration of CGC itself, the diffused sulfate ions also react with Ca(OH)2, forming gypsum and ettringite; this plays a positive role in filling the pores at the early stage, whereas, at the later stage, the generated micro-cracks are detrimental to the performance of CGC. In particular, the proposed sulfate corrosion model elucidates the degradation mechanism of CGC exposed to a sulfate-rich environment.

3.
Materials (Basel) ; 14(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799703

RESUMO

To reveal the influence mechanism of ettringite (AFt) crystals and microstructure characteristics on the strength of calcium-based stabilized soil, the strengths and microscopic properties of seven groups of stabilized soil samples were studied systematically through unconfined compressive strength, scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TG), and Fourier transform infrared spectroscopy (FTIR) testing methods. The results indicate that the strength of the cement-stabilized soil is relatively high because abundant calcium silicate hydrate (CSH) gels coat the outer surface of soil particles to cement together. For the cement-gypsum-stabilized soil, superabundant thick and long AFt crystals make the pores in soil particles larger, and the sample becomes looser, resulting in lower strength than that of the cement-stabilized soil. However, the strength of the cement-gypsum-lime-stabilized soil is slightly stronger than that of the cement-stabilized soil, for the reason that the appropriate amount of fine AFt crystals fill the macropores between soil particles to form a network space structure and sufficient CSH gels cement the soil particles and the AFt crystals network space structure tightly together. It could be suggested that the components of calcium-based stabilizer should consider the optimal production balance between CSH gels and fine AFt crystals.

4.
Materials (Basel) ; 13(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050526

RESUMO

This work aimed to investigate the effects of steel tube corrosion on the axial ultimate load-bearing capacity (AULC) of circular thin-walled concrete-filled steel tubular (CFST) members. Circular thin-walled CFST stub column specimens were made of steel tubes with various wall-thicknesses. These CFST column specimens were subjected to an accelerated corrosion test, where the steel tubes were corroded to different degrees of corrosion. Then, these CFST specimens with corroded steel tubes experienced an axial static loading test. Results show that the failure patterns of circular thin-walled CFST stub columns with corroded steel tubes are different from those of the counterpart CFST columns with ordinary wall-thickness steel tubes, which is a typical failure mode of shear bulging with slight local outward buckling. The ultimate strength and plastic deformation capacity of the CFST specimens decreased with the increasing degree of steel corrosion. The failure modes of the specimens still belonged to ductile failure because of the confinement of outer steel tube. The degree of steel tube corrosion, diameter-to-thickness ratio, and confinement coefficient had substantial influences on the AULC and the ultimate compressive strength of circular thin-walled CFST stub columns. A simple AULC prediction model for corroded circular thin-walled CFST stub columns was presented through the regression of the experimental data and parameter analysis.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 842-7, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27400535

RESUMO

By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...