Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7591-7611, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299518

RESUMO

Multispectral imaging captures spatial information across a set of discrete spectral channels and is widely utilized across diverse applications such as remote sensing, industrial inspection, and biomedical imaging. Multispectral filter arrays (MSFAs) are filter mosaics integrated atop image sensors that facilitate cost-effective, compact, snapshot multispectral imaging. MSFAs are pre-configured based on application-where filter channels are selected corresponding to targeted absorption spectra-making the design of optimal MSFAs vital for a given application. Despite the availability of many design and optimization approaches for spectral channel selection and spatial arrangement, major limitations remain. There are few robust approaches for joint spectral-spatial optimization, techniques are typically only applicable to limited datasets and most critically, are not available for general use and improvement by the wider community. Here, we reconcile current MSFA design techniques and present Opti-MSFA: a Python-based open-access toolbox for the centralized design and optimization of MSFAs. Opti-MSFA incorporates established spectral-spatial optimization algorithms, such as gradient descent and simulated annealing, multispectral-RGB image reconstruction, and is applicable to user-defined input of spatial-spectral datasets or imagery. We demonstrate the utility of the toolbox by comparing against other published MSFAs using the standard hyperspectral datasets Samson and Jasper Ridge, and further show application on experimentally acquired fluorescence imaging data. In conjunction with end-user input and collaboration, we foresee the continued development of Opti-MSFA for the benefit of the wider research community.

2.
Adv Mater ; 32(37): e2003033, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32729146

RESUMO

The coexistence of large conductivity and robust ferroelectricity is promising for high-performance ferroelectric devices based on polarization-controllable highly efficient carrier transport. Distinct from traditional perovskite ferroelectrics, Bi2 WO6 with a layered structure shows a great potential to preserve its ferroelectricity under substantial electron doping. Herein, by artificial design of photosensitive heterostructures with desired band alignment, three orders of magnitude enhancement of the short-circuit photocurrent is achieved in Bi2 WO6 /SrTiO3 at room temperature. The microscopic mechanism of this large photocurrent originates from separated transport of electrons and holes in [WO4 ]-2 and [Bi2 O2 ]+2 layers respectively with a large in-plane conductivity, which is understood by a combination of ab initio calculations and spectroscopic measurements. The layered electronic structure and appropriately designed band alignment in this layered ferroelectric heterostructure provide an opportunity to achieve high-performance and nonvolatile switchable electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...