Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552441

RESUMO

Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40 mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20 mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.


Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Líquido da Lavagem Broncoalveolar , Diterpenos , Poli I-C , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Diterpenos/farmacocinética , Diterpenos/farmacologia , Masculino , Camundongos , Andrographis/química , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Elastase de Leucócito/metabolismo
2.
J Ethnopharmacol ; 326: 117992, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38428654

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sleep plays a critical role in several physiologic processes, and sleep disorders increase the risk of depression, dementia, stroke, cancer, and other diseases. Stress is one of the main causes of sleep disorders. Ginseng Radix et Rhizoma and Polygalae Radix have been reported to have effects of calming the mind and intensifying intelligence in Chinese Pharmacopoeia. Traditional Chinese medicine prescriptions composed of Ginseng Radix et Rhizoma and Polygalae Radix (Shen Yuan, SY) are commonly used to treat insomnia, depression, and other psychiatric disorders in clinical practice. Unfortunately, the underlying mechanisms of the SY extract's effect on sleep are still unknown. AIM OF THE STUDY: This study aimed to investigate the hypnotic effect of the SY extract in normal mice and mice with chronic restraint stress (CRS)-induced sleep disorders and elucidate the underlying mechanisms. MATERIALS AND METHODS: The SY extract (0.5 and 1.0 g/kg) was intragastrically administered to normal mice for 1, 14, and 28 days and to CRS-treated mice for 28 days. The open field test (OFT) and pentobarbital sodium-induced sleep test (PST) were used to evaluate the hypnotic effect of the SY extract. Liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay were utilized to detect the levels of neurotransmitters and hormones. Molecular changes at the mRNA and protein levels were determined using real-time quantitative polymerase chain reaction and Western blot analysis to identify the mechanisms by which SY improves sleep disorders. RESULTS: The SY extract decreased sleep latency and increased sleep duration in normal mice. Similarly, the sleep duration of mice subjected to CRS was increased by administering SY. The SY extract increased the levels of tryptophan (Trp) and 5-hydroxytryptamine (5-HT) and the expression of tryptophan hydroxylase 2 (TPH2) in the cortex of normal mice. The SY extract increased the Trp level, transcription and expression of estrogen receptor beta and TPH2 in the cortex in mice with sleep disorders by decreasing the serum corticosterone level, which promoted the synthesis of 5-HT. Additionally, the SY extract enhanced the expression of arylalkylamine N-acetyltransferase, which increased the melatonin level and upregulated the expressions of melatonin receptor-2 (MT2) and Cryptochrome 1 (Cry1) in the hypothalamus of mice with sleep disorders. CONCLUSIONS: The SY extract exerted a hypnotic effect via the Trp/5-HT/melatonin pathway, which augmented the synthesis of 5-HT and melatonin and further increased the expressions of MT2 and Cry1.


Assuntos
Medicamentos de Ervas Chinesas , Melatonina , Distúrbios do Início e da Manutenção do Sono , Humanos , Camundongos , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Triptofano , Serotonina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Melatonina/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico
3.
Front Immunol ; 15: 1338096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495892

RESUMO

Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.


Assuntos
Interferon Tipo I , Viroses , Humanos , Interferon lambda , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Interferon Tipo I/metabolismo , Epitélio/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
J Adv Res ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295876

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, whereas there is no approved drug therapy due to its complexity. Studies are emerging to discuss the role of selective autophagy in the pathogenesis of NAFLD, because the specificity among the features of selective autophagy makes it a crucial process in mitigating hepatocyte damage caused by aberrant accumulation of dysfunctional organelles, for which no other pathway can compensate. AIM OF REVIEW: This review aims to summarize the types, functions, and dynamics of selective autophagy that are of particular importance in the initiation and progression of NAFLD. And on this basis, the review outlines the therapeutic strategies against NAFLD, in particular the medications and potential natural products that can modulate selective autophagy in the pathogenesis of this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW: The critical roles of lipophagy and mitophagy in the pathogenesis of NAFLD are well established, while reticulophagy and pexophagy are still being identified in this disease due to the insufficient understanding of their molecular details. As gradual blockage of autophagic flux reveals the complexity of NAFLD, studies unraveling the underlying mechanisms have made it possible to successfully treat NAFLD with multiple pharmacological compounds that target associated pathways. Overall, it is convinced that the continued research into selective autophagy occurring in NAFLD will further enhance the understanding of the pathogenesis and uncover novel therapeutic targets.

5.
Front Pharmacol ; 14: 1210393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408758

RESUMO

Stress may trigger sleep disorders and are also risk factors for depression. The study explored the melatonin-related mechanisms of stress-associated sleep disorders on a mouse model of chronic stress by exploring the alteration in sleep architecture, melatonin, and related small molecule levels, transcription and expression of melatonin-related genes as well as proteins. Mice undergoing chronic restraint stress modeling for 28 days showed body weight loss and reduced locomotor activity. Sleep fragmentation, circadian rhythm disorders, and insomnia exhibited in CRS-treated mice formed sleep disorders. Tryptophan and 5-hydroxytryptamine levels were increased in the hypothalamus, while melatonin level was decreased. The transcription and expression of melatonin receptors were reduced, and circadian rhythm related genes were altered. Expression of downstream effectors to melatonin receptors was also affected. These results identified sleep disorders in a mice model of chronic stress. The alteration of melatonin-related pathways was shown to trigger sleep disorders.

6.
J Agric Food Chem ; 70(51): 16188-16200, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36529943

RESUMO

Nelumbo nucifera Gaertn. is an important aquatic vegetable, and its dried stamen (Nelumbinis stamen, NS) is a valuable nutraceutical usually used as a herbal tea. Here, we used ultrahigh-performance liquid chromatography (UPLC)-quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography (HPLC) to chemically profile NS and quantify their main constituent flavonoids, respectively. In total, 44 components were identified, including organic acids, flavonoids, monoterpene glycosides, and fatty acids. Experimental mice were induced with fatigue by exposure to chronic restraint stress (CRS) for 8 h daily for 15 days and then treated with an aqueous extract of NS (0.5 and 1 g/kg) via gavage. NS significantly mitigated CRS-induced skeletal muscle dysfunction and fatigue in mice possibly by lowering serum corticosterone levels and restoring Sestrin2 expression in the gastrocnemius to regulate metabolism, preserve mitochondrial homeostasis, and promote antioxidant capacity. These results demonstrate that NS can be used as a nutraceutical or supplement for controlling stress-induced muscle dysfunction and fatigue.


Assuntos
Corticosterona , Flavonoides , Camundongos , Animais , Flavonoides/química , Extratos Vegetais/química , Fadiga/tratamento farmacológico , Fadiga/etiologia , Músculos/química
7.
Front Pharmacol ; 13: 824138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350766

RESUMO

Acetaminophen (APAP)-induced liver injury (AILI) is the main cause of acute liver failure in the developed countries. The present study aimed to evaluate the therapeutic efficacy of cajaninstilbene acid (CSA), a major stilbene compound derived from the leaves of pigeon pea [Cajanus cajan (L.) Millsp.], against AILI. CSA (50, 75 mg/kg, p. o.) was administered to male C57BL/6 N mice 0.5 h after a toxic dose of APAP (300 mg/kg, i. p.). The direct effect of CSA on hepatocytes was tested on primary mouse hepatocytes. Serum transaminases, hematoxylin and eosin staining, TUNEL and propidium iodide staining were used to assess hepatic damage and cell death. The results demonstrated that APAP-induced liver injury was ameliorated by CSA, as evidenced by decreased alanine aminotransferase and aspartate aminotransferase levels in the serum, and fewer necrotic and apoptotic hepatocytes in vitro and in vivo. Consequently, the inflammation in response to APAP overdose was inhibited by CSA. Without affecting APAP metabolic activation, CSA interrupted the sustained JNK-Sab-ROS activation loop and alleviated oxidative stress. Additionally, CSA promoted mitochondrial quality control, including mitochondrial biogenesis and mitophagy, as revealed by increased PGC-1α, TFAM, LC3-Ⅱ, PINK1 and mitochondrial Parkin expression and decreased p62 expression. Further mechanistic investigations showed that independent of CAMKK2, LKB1-mediated AMPK activation, which was promoted by Sestrin2, might be responsible for the protective effect of CSA. Our study demonstrates that CSA alleviates APAP-induced oxidative stress and enhanced mitochondrial quality control through Sestrin2/AMPK activation, thereby protecting against AILI,.

8.
Biomedicines ; 9(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680438

RESUMO

Currently, an increasing number of people are suffering from fatigue due to the state of their lifestyles, such as sedentary work in a relatively small space, irregular sleep patterns, or the lack of movement and exercise. The present study was designed to simulate the occurrence of fatigue in the above populations through a chronic restraint stress (CRS) model, and to reveal its dynamic processes and potential underlying molecular mechanisms. ICR mice were subjected to 8 h of restraint stress each day for 5, 10, or 15 days. It was found that the weight-loaded swimming performance, grip strength, and locomotor activity of the mice all decreased under CRS treatment, and that up to 15 days of CRS induced notable fatigue. Gastrocnemius muscle atrophy and some abnormal biochemical parameters related to fatigue under CRS were observed. Furthermore, transcriptome data showed that the changes in muscle cell metabolism and mitochondrial dysfunction were associated with the AMPK signaling pathway in CRS-treated mice. Western blotting analysis of the AMPK/PGC-1α signaling pathway revealed that CRS could decrease mitochondrial biogenesis and reduce the numbers of type I skeletal muscle fibers in the gastrocnemius of mice. CRS could also block the protective mitophagic flux to inhibit the abnormal clearance of damaged mitochondria. Our study suggests a critical link between muscle atrophy and CRS-induced fatigue in mice, suggesting that the pharmacological promotion of muscle and mitochondrial function can be used as a treatment for stress-induced fatigue.

9.
Biomedicines ; 9(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34440143

RESUMO

Acetaminophen (APA)-induced hepatotoxicity is coupled with the activation of autophagy. We sought to determine whether selective autophagy of the endoplasmic reticulum (ER), termed ER-phagy, is involved in APA hepatotoxicity and to explore its potential as a therapeutic target for APA-induced liver injury (AILI). APA (300 or 600 mg/kg) was administered to male C57BL/6N mice, with and without rapamycin, glycycoumarin (GCM) and N-acetylcysteine (NAC). The results demonstrated that ER-phagy accompanied with ER stress was activated after APA overdose. The dynamic changes of LC3 and TEX264 revealed that ER-phagy was induced as early as 6 h and peaked at 24 h following the APA injection. A delayed treatment with GCM, but not rapamycin, considerably attenuated a liver injury and, consequently, reduced its mortality. This is probably due to the inhibition of ER stress and the acceleration of liver regeneration via enhanced ER-phagy. Unlike the impaired hepatocyte proliferation and more severe liver injury in mice that received prolonged treatment with NAC, liver recovery is facilitated by repeated treatment with GCM. These findings suggest that TEX264-mediated ER-phagy is a compensatory mechanism against ER stress provoked by an APA overdose. A delayed and prolonged treatment with GCM enhances ER-phagy, thus serving as a potential therapeutic approach for patients presenting at the late stage of AILI.

10.
Behav Brain Res ; 405: 113146, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33545198

RESUMO

Ginsenoside Rb1 (Rb1) is one of the most active components found in ginseng and provides important benefits to the central nervous system, especially for the improvement of learning and memory. Previous studies demonstrated that Rb1 protected against scopolamine-induced amnesia and exhibited memory-enhancing effects in the SAMP8 mouse model. However, the effects of Rb1 against chronic restraint stress (CRS)-induced cognitive impairments, especially the role of Rg1 on the performance of reward directed instrumental conditioning have not been investigated. In this study, rats were subjected to CRS (6 h/day) for 28 days. Thereafter, behavioural tests including reward-directed instrumental conditioning task (RICT) and the Morris water maze (MWM) task were conducted. Administered of Rb1 (6.75 and 13.5 mg/kg, i.p.) remarkably ameliorated the memory impairments caused by CRS as evident from the results of RICT and MWM task, and this effect was accompanied by noticeable alterations in the levels of oxidative markers (superoxide dismutase, catalase, and lipid peroxidation) in the hippocampus. Additionally, Rb1 reduced the ratio of Bax:Bcl-2 and the expression of cleaved caspase-3 and cleaved caspase-9, increased the levels of synaptophysin (SYP) and postsynaptic density 95 (PSD95) and activated the BDNF/TrkB pathway in the hippocampus. In summary, the present study demonstrated that Rb1 rescues cognitive deficits induced by CRS is partially mediated by antagonizing oxidative stress and apoptosis, improving synaptic plasticity and restoring the BDNF/TrkB signalling pathway. This newly discovered effect of Rb1 sheds light on its applications in the development of therapeutic interventions to alleviate the deleterious effects of chronic stress.


Assuntos
Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Ginsenosídeos/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Plasticidade Neuronal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Estresse Psicológico/complicações , Animais , Masculino , Ratos , Ratos Wistar , Restrição Física , Transdução de Sinais/efeitos dos fármacos
11.
J Agric Food Chem ; 69(7): 2129-2137, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560125

RESUMO

Cajaninstilbene acid (CSA), an active stilbene isolated from the leaves of pigeon pea (Cajanus cajan), exhibits several bioactivities. To develop CSA as a potential nutraceutical and provide pharmacokinetic foundations for its further in vivo bioactivity studies, this study aims to explore its absorption, metabolism, and excretion systematically. Human colon adenocarcinoma (Caco-2) cell monolayers were utilized to investigate the CSA transport mechanism. CSA metabolites were identified in rat biological samples and quantified to explore their excretion routes. CSA exhibited a high permeability and was transported across Caco-2 monolayers mainly by passive transport via the transcellular process. Four new CSA metabolites were found in vivo, namely, CSA-2-COO-glucuronide, 6,12-dihydroxy CSA, 3-hydroxy-5-methoxystilbene-3-O-glucuronide, and 6-hydroxy CSA-3-O-glucuronide, in addition to our previously reported metabolite CSA-3-O-glucuronide. These metabolites were mainly excreted in bile. Our results indicate that metabolism but not absorption is the major barrier limiting the oral bioavailability of CSA.


Assuntos
Cajanus , Estilbenos , Animais , Células CACO-2 , Humanos , Absorção Intestinal , Ratos , Salicilatos
12.
J Ethnopharmacol ; 265: 113317, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32861821

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Polygalae (RP) has been traditionally used for the treatment of various psychiatric disorders in East Asia. AIM OF THE STUDY: Depression is a severe mental disease with high prevalence in people, and neurobiology changes of depression are not fully clarified yet. The present study aimed to investigate the antidepressant effect and underlying mechanism of RP in behavioral despair mice and chronic restraint stress (CRS)-induced rats. MATERIALS AND METHODS: ICR mice were treated with various doses of RP (0.13-1.0 g/kg) for 14 days and then subjected to forced swimming test (FST). Wistar rats were exposed to 6-hour restraint stress daily for 28 days, and RP (0.5 and 1 g/kg) was administered by gavage 1 h prior to CRS procedure. Subsequently, behavioral tests were performed and brains were collected for biochemical analysis. RESULTS: RP reduced immobility time of mice in FST and reversed abnormal behaviors of rats induced by CRS in sucrose preference test, novelty-suppressed feeding test, open field test and FST. Moreover, RP could enhance the expression of LC3-II and beclin1 and decrease the level of p62 both in cortex of mice and prefrontal cortex (PFC) of rats, and regulate the dysfunction of AMPK-mTOR pathway in PFC of CRS rats. Activated microglia, impaired astrocyte, elevated protein expression of NLRP3, ASC and caspase-1, and increased mRNA levels of proinflammatory cytokines were observed in PFC of CRS rats, all of which were corrected by RP treatment. CONCLUSION: RP exerted remarkable antidepressant activity in behavioral despair mice and CRS-induced rats, probably by promoting autophagy and inhibiting neuroinflammation.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Antidepressivos/administração & dosagem , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Wistar , Restrição Física , Natação
13.
Ann Transl Med ; 8(6): 356, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355800

RESUMO

BACKGROUND: The ovariectomized (OVX) rodent model is most widely used for studying the influence of estrogen deprivation on memory. However, the results of these studies are inconsistent, in that the memory of OVX rodents shows either impairment or no change. These inconsistent outcomes increase the difficulty of researching neurochemical mechanisms and evaluating drug efficacy. One possible explanation for these discrepancies might be that the time point for memory examination after OVX varies considerably among studies. The aim of our study was to investigate the effects of estrogen deprivation on memory and the expression of memory-related proteins at different times after OVX. METHODS: Novel object recognition (NOR), step-through passive avoidance (STPA) and the Morris water maze (MWM) were performed to evaluate the memory performance of mice at different times after OVX. The expressions of BDNF, TrkB, ULK1 and LC3II/LC3I in the hippocampus were also assessed to explore the relevant mechanisms. RESULTS: After OVX, a significant memory impairment was found in the STPA test at 4 weeks. In the NOR and MWM tests, however, memory deficits were not observed until 8 weeks post-OVX. Interestingly, at 8 weeks, a memory rebound was found in the STPA test. In the hippocampus, the levels of BDNF and TrkB in OVX mice were markedly decreased at 4 and 8 weeks. Subsequently, a significant decrease in the ULK1 and LC3II/LC3I level in OVX mice was observed at 8 weeks. CONCLUSIONS: Memory impairment in mice was observed as early as 4 weeks after OVX, although there was a possibility of memory rebound with the prolongation of estrogen deprivation. Eight weeks of estrogen deprivation would be more likely to induce hippocampus-dependent memory impairment. This progressive impairment of memory might be due to the downregulation of the BDNF/TrkB signaling pathway at the early post-OVX stage, while the decrease of autophagy level in the later stage might also contribute to these progressive alterations. The underlying relationship between the BDNF/TrkB signaling pathway and autophagy in this progressive impairment of memory requires further study.

14.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098023

RESUMO

In the pathology-oriented study of depression, inflammation hypothesis has received increasing attention for recent years. To mimic the depressive state caused by inflammation, rodents injected intraperitoneally with lipopolysaccharide (LPS) are usually used to stimulate an immune response. However, the dose of LPS that causes depressive-like behavior varies widely across many literatures. Previous study has uncovered the non-linearity in the dose-effect relationship for the depressive-like behavior induced by LPS administration, while the reason for this is still unclear. The present study aims to investigate the underlying mechanisms of this non-linear dose-dependent relationship. Four groups of mice were injected intraperitoneally with different doses of LPS (0, 0.32, 0.8, and 2 mg/kg). The tail suspension test was conducted to evaluate the depressive-like behavior within 23-25 h after the LPS administration. The neuroplasticity was assessed by the levels of related proteins, TrkB and PSD-95, and by the quantification of neurons using Nissl staining. The levels of the two metabolites of the kynurenine (KYN) pathway, 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA), in the brain were analyzed by LC-MS/MS. Activation of microglia and astrocytes in the brain were also determined by immunohistochemistry and western blotting, respectively. The results showed that, compared with the control group, the mice in the 0.8 mg/kg LPS-treated group exhibited a remarkable increase of immobility time in the tail suspension test. The neuroplasticity of mice in the 0.8 mg/kg LPS-treated group was also significantly reduced. The neurotoxic metabolite, 3-HK, was accumulated significantly in the hippocampus of the 0.8 mg/kg LPS-treated mice. Surprisingly, the 2 mg/kg LPS-treated mice did not exhibit a remarkable change of 3-HK but expressed increased KYNA significantly, which is neuroprotective. Furthermore, the activation of microglia and astrocytes, which were recognized as the primary source of 3-HK and KYNA, respectively, corresponded to the content of these two metabolites of the KYN pathway in each group. Consequently, it was speculated that the homeostasis of different glial cells could lead to a non-linear dose-dependent behavior by regulating the KYN pathway in the LPS-induced depressive-like mice.


Assuntos
Astrócitos/metabolismo , Depressão , Homeostase/efeitos dos fármacos , Cinurenina/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Animais , Astrócitos/patologia , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/metabolismo , Depressão/patologia , Masculino , Camundongos , Microglia/patologia
15.
Brain Res Bull ; 153: 239-249, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542427

RESUMO

Chronic social defeat stress (CSDS) is a widely used behavioural paradigm of psychosocial stress that can be used to research the pathogenesis of depression and seek antidepressant drugs. Dammarane sapogenins (DS), the deglycosylated product of ginsenosides, has a wide range of biological activities, including immunomodulatory, antifatigue, antitumour and antidepressant activities. However, whether DS has antidepressant-like effects in a CSDS mouse model remains unknown. Therefore, the present study was conducted to evaluate the antidepressant properties of DS in CSDS mice and its underlying mechanisms. The results showed that the oral administration of DS (40 and 80 mg/kg) increased the time spent in the interaction zone in the social interaction test and the sucrose intake in the sucrose preference test, decreased the latency in the novelty-suppressed feeding test, and reduced the immobility time in both the tail suspension test and forced swimming test. Biochemical analyses of brain tissue and serum showed that DS treatment significantly decreased serum corticosterone levels and enhanced brain monoamine neurotransmitter levels in CSDS mice. In addition, an impairment in hippocampal neurogenesis that paralleled a reduced BDNF level in the hippocampus was observed in the mice that were subjected with CSDS for 3 weeks, while treatment with DS reversed these changes. Moreover, DS treatment significantly upregulated BDNF, pTrkB/TrkB, pAkt/Akt, pPI3K/PI3K, pCREB/CREB, pERK1/2/ERK1/2 and pmTOR/mTOR protein expression in the hippocampus. In conclusion, our results showed that DS exerts antidepressant-like effects in mice with CSDS-induced depression, that the effects may be mediated by the normalization of monoamine neurotransmitter levels, the prevention of HPA axis dysfunction and the impairment of hippocampal neurogenesis, and that this occurs partly through the ability of DS to enhance BDNF expression by increasing the TrkB/CREB/ERK pathway and the PI3K/AKT/mTOR pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Sapogeninas/farmacologia , Animais , Antidepressivos/farmacologia , Corticosterona/sangue , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Ginsenosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sapogeninas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Triterpenos/metabolismo , Triterpenos/farmacologia , Damaranos
16.
Phytother Res ; 33(10): 2726-2736, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31353678

RESUMO

20(S)-Protopanaxadiol (PPD) is a basic aglycone of the dammarane triterpenoid saponins and exerts antidepressant-like effects on behaviour in the forced swimming test (FST) and tail suspension test (TST) and in rat olfactory bulbectomy depression models. However, the antidepressant effects of PPD have not been studied thoroughly. The objective of the present study was first to investigate the effect of PPD on depression behaviours induced by chronic social defeat stress (CSDS) in mice. The results showed that CSDS was effective in producing depression-like behaviours in mice, as indicated by decreased responses in the social interaction test, sucrose preference test, TST, and FST, and that this effect was accompanied by noticeable alterations in the levels of oxidative markers (superoxide dismutase, catalase, and lipid peroxidation) and monoamines (5-HT and NE) in the hippocampus and serum corticosterone levels. Additionally, western blot analysis revealed that CSDS exposure significantly downregulated BDNF, p-TrkB/TrkB, p-Akt/Akt, and p-mTOR/mTOR protein expression in the hippocampus. Remarkably, chronic PPD treatment significantly ameliorated these behavioral and biochemical alterations associated withCSDS-induced depression. Our results suggest that PPD exerts antidepressant-like effects in mice with CSDS-induced depression and that this effect may be mediated by the normalization of neurotransmitter and corticosterone levels and the alleviation of oxidative stress, as well as the enhancement of the PI3K/Akt/mTOR-mediated BDNF/TrkB pathway.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Sapogeninas/farmacologia , Estresse Psicológico/complicações , Animais , Doença Crônica , Corticosterona/sangue , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ratos , Sapogeninas/uso terapêutico
17.
Zhongguo Zhong Yao Za Zhi ; 43(3): 591-595, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600627

RESUMO

The purpose of this study was to investigate the effect of Huaier on autophagy of human hepatoma SK-HEP-1 cells and the effect of autophagy on the proliferation of SK-HEP-1 cells. CCK-8 assay was used to evaluate the effect of Huaier on the proliferation of SK-HEP-1 cells under different concentrations and different times. Acridine orange staining was used to measure the effect of Huaier on the autolysosome formation in SK-HEP-1 cells. Immunofluorescence assay was applied to examine the effect of Huaier on the expression and distribution of autophagy marker LC3 in SK-HEP-1 cells. In addition, LC3 expression was also checked by immunoblot analysis in the presence of Huaier. At last, the effects of Huaier in combination with autophagy inhibitor bafilomycin A1 on the proliferation of SK-HEP-1 cells was detected by CCK-8 assay. The results showed that Huaier aqueous extract significantly inhibited the proliferation of human hepatoma SK-HEP-1 cells in a dose- and time-dependent manner. Huaier aqueous extract dramatically promoted the formation of autolysosome in SK-HEP-1 cells. Moreover, Huaier markedly increased the number and intensity of intracellular LC3 fluorescent puncta and up-regulated LC3-Ⅱ expression. These data indicated that Huaier evidently activated autophagy of SK-HEP-1 cells. Additionally, autophagy inhibition significantly attenuated the sensitivity of SK-HEP-1 cells to Huaier treatment. Therefore, autophagy activation is involved in the inhibitory effects of Huaier on the proliferation of human hepatoma SK-HEP-1 cells.


Assuntos
Autofagia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Misturas Complexas/farmacologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Trametes , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...