Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 288, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698038

RESUMO

BACKGROUND: Wheat (Triticum aestivum L.) is an important cereal crop. Increasing grain yield for wheat is always a priority. Due to the complex genome of hexaploid wheat with 21 chromosomes, it is difficult to identify underlying genes by traditional genetic approach. The combination of genetics and omics analysis has displayed the powerful capability to identify candidate genes for major quantitative trait loci (QTLs), but such studies have rarely been carried out in wheat. In this study, candidate genes related to yield were predicted by a combined use of linkage mapping and weighted gene co-expression network analysis (WGCNA) in a recombinant inbred line population. RESULTS: QTL mapping was performed for plant height (PH), spike length (SL) and seed traits. A total of 68 QTLs were identified for them, among which, 12 QTLs were stably identified across different environments. Using RNA sequencing, we scanned the 99,168 genes expression patterns of the whole spike for the recombinant inbred line population. By the combined use of QTL mapping and WGCNA, 29, 47, 20, 26, 54, 46 and 22 candidate genes were predicted for PH, SL, kernel length (KL), kernel width, thousand kernel weight, seed dormancy, and seed vigor, respectively. Candidate genes for different traits had distinct preferences. The known PH regulation genes Rht-B and Rht-D, and the known seed dormancy regulation genes TaMFT can be selected as candidate gene. Moreover, further experiment revealed that there was a SL regulatory QTL located in an interval of about 7 Mbp on chromosome 7A, named TaSL1, which also involved in the regulation of KL. CONCLUSIONS: A combination of QTL mapping and WGCNA was applied to predicted wheat candidate genes for PH, SL and seed traits. This strategy will facilitate the identification of candidate genes for related QTLs in wheat. In addition, the QTL TaSL1 that had multi-effect regulation of KL and SL was identified, which can be used for wheat improvement. These results provided valuable molecular marker and gene information for fine mapping and cloning of the yield-related trait loci in the future.


Assuntos
Cromossomos de Plantas , Triticum , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Fenótipo , Dormência de Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética
2.
PLoS One ; 12(11): e0188662, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176820

RESUMO

Genetic improvement of grain yield is always an important objective in wheat breeding. Here, a genome-wide association study was conducted to parse the complex genetic composition of yield-related traits of 105 elite wheat varieties (lines) using the Wheat 90K Illumina iSelect SNP array. Nine yield-related traits, including maximum number of shoots per square meter (MSN), effective number of spikes per square meter (ESN), percentage of effective spike (PES), number of kernels per spike (KPS), thousand-kernel weight (TKW), the ratio of kernel length/kernel width (RLW), leaf-area index (LAI), plant height (PH), and grain yield (GY), were evaluated across four environments. Twenty four highly significant marker-trait associations (MTAs) (P < 0.001) were identified for nine yield-related traits on chromosomes 1A, 1D, 2A (2), 3B, 4A (2), 4B, 5A (4), 5B (4), 5D, 6B (2), 7A (2), and 7B (3), explaining 10.86-20.27% of the phenotypic variations. Of these, four major loci were identified in more than three environments, including one locus for RLW (6B), one locus for TKW (7A), and two loci for PH (7B). A cleaved amplified polymorphic sequence (CAPS) marker Td99211 for TKW on chromosome 5A was developed and validated in both a natural population composed of 372 wheat varieties (lines) and a RIL population derived from the cross of Yangxiaomai × Zhongyou 9507. The CAPS marker developed can be directly used for marker-assisted selection in wheat breeding, and the major MTAs identified can provide useful information for fine-mapping of the target genes in future studies.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Sementes/genética , Triticum/genética , Alelos , Sequência de Bases , Cromossomos de Plantas/genética , Marcadores Genéticos , Genética Populacional , Modelos Genéticos , Fenótipo , Polimorfismo Genético , Análise de Componente Principal , Reprodutibilidade dos Testes
3.
Front Plant Sci ; 7: 1902, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066462

RESUMO

Thousand-grain weight (TGW) of wheat (Triticum aestivum L.) contributes significantly to grain yield. In the present study, a candidate gene associated with TGW was identified through specific-locus amplified fragment sequencing (SLAF-seq) of DNA bulks of recombinant inbred lines (RIL) derived from the cross between Jing 411 and Hongmangchun 21. The gene was located on chromosome 7A, designated as TaTGW-7A with a complete genome sequence and an open reading frame (ORF). A single nucleotide polymorphism (SNP) was present in the first exon between two alleles at TaTGW-7A locus, resulting in a Val to Ala substitution, corresponding to a change from higher to lower TGW. Cleaved amplified polymorphic sequence (CAPS) (TGW7A) and InDel (TG9) markers were developed to discriminate the two alleles TaTGW-7Aa and TaTGW-7Ab for higher and lower TGW, respectively. A major QTL co-segregating with TaTGW-7A explained 21.7-27.1% of phenotypic variance for TGW in the RIL population across five environments. The association of TaTGW-7A with TGW was further validated in a natural population and Chinese mini-core collections. Quantitative real-time PCR revealed higher transcript levels of TaTGW-7Aa than those of TaTGW-7Ab during grain development. High frequencies of the superior allele TaTGW-7Aa for higher TGW in Chinese mini-core collections (65.0%) and 501 wheat varieties (86.0%) indicated a strong and positive selection of this allele in wheat breeding. The molecular markers TGW7A and TG9 can be used for improvement of TGW in breeding programs.

4.
Yi Chuan ; 32(6): 613-24, 2010 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-20566466

RESUMO

The common wheat relative species are important germplasm for wheat breeding. In the present study, novel allelic variants at Glu-B3 locus were cloned to provide gene resources for wheat quality improvement. Four Glu-B3-locus specific primer sets LB1F/LB1R, LB2F/LB2R, LB3F/LB3R, and LB4F/LB4R were employed to isolate novel allelic variants of GluB3-1, GluB3-2, GluB3-3, and GluB3-4 from seven common wheat relative species, i.e., T. durum, T. dicoccum, T. dicoccoides, Aegilops longissima, Ae. searsii, Ae. Bicornis, and Ae. speltoides, and the software MEGA 4 was used to construct a phylogenetic tree. In total, 16 novel allelic variants of GluB3-1, GluB3-3, and GluB3-4 genes were isolated from the seven common wheat relative species, designated GluB3-16, GluB3-35, GluB3-36, GluB3-37, GluB3-46, GluB3-47, GluB3-48, GluB3-49, GluB3-410, GluB3-411, GluB3-412, GluB3-413, GluB3-414, GluB3-415, GluB3-416 and GluB3-417, respectively. In detail, GluB3-16 was cloned from T. dicoccoides with LB1F/LB1R, and the molecular weight of the de-duced amino acid was 39.2 kDa. GluB3-35, GluB3-36, and GluB3-37 were isolated from T. durum and T. dicoccum with the primer set LB3F/LB3R, and the molecular weights of their deduced peptides were 44.5 kDa (GluB3-36) and 44.6 kDa (GluB3-35 and GluB3-37). The molecular weight of deduced peptides of GluB3-4 ranged from 38.6 kDa (GluB3-414) to 42.5 kDa (GluB3-413). All the 16 new allelic variants showed a single open reading frame (ORF), and their deduced amino-acid sequences had a typical sequence structure of LMW-GS. The allelic variants at Glu-B3 locus identified in com-mon wheat relative species provide potential gene resources for wheat quality breeding and gene transformation. The results suggested that these Glu-B3 genes originated from different evolution processes.


Assuntos
Glutens/genética , Filogenia , Triticum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Loci Gênicos , Glutens/química , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...