Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520363

RESUMO

One fundamental challenge in diffusion magnetic resonance imaging (dMRI) harmonization is to disentangle the contributions of scanner-related effects from the variable brain anatomy for the observed imaging signals. Conventional harmonization methods rely on establishing an atlas space to resolve anatomical variability and generate a unified inter-site mapping function. However, this approach is limited in accounting for the misalignment of neuroanatomy that still widely persists even after registration, especially in regions close to cortical boundaries. To overcome this challenge, we propose a personalized framework in this paper to more effectively address the confounding from the misalignment of neuroanatomy in dMRI harmonization. Instead of using a common template representing site-effects for all subjects, the main novelty of our method is the adaptive computation of personalized templates for both source and target scanning sites to estimate the inter-site mapping function. We integrate our method with the rotation invariant spherical harmonics (RISH) features to achieve the harmonization of dMRI signals between sites. In our experiments, the proposed approach is applied to harmonize the dMRI data acquired from two scanning platforms: Siemens Prisma and GE MR750 from the Adolescent Brain Cognitive Development dataset and compared with a state-of-the-art method based on RISH features. Our results indicate that the proposed harmonization framework achieves superior performance not only in reducing inter-site variations due to scanner differences but also in preserving sex-related biological variability in original cohorts. Moreover, we assess the impact of harmonization on the estimation of fiber orientation distributions and show the robustness of the personalized harmonization procedure in preserving the fiber orientation of original dMRI signals.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Adolescente , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/patologia , Desenvolvimento do Adolescente , Processamento de Imagem Assistida por Computador/métodos
2.
Front Immunol ; 14: 1302504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288123

RESUMO

Ocular abnormalities have been reported in association with viral infections, including Long COVID, a debilitating illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This report presents a case of a female patient diagnosed with Acute Macular Neuroretinopathy (AMN) following an Influenza A virus infection during Long COVID who experienced severe inflammation symptoms and ocular complications. We hypothesize that the rare occurrence of AMN in this patient could be associated with the immune storm secondary to the viral infection during Long COVID.


Assuntos
COVID-19 , Vírus da Influenza A , Viroses , Síndrome dos Pontos Brancos , Humanos , Feminino , SARS-CoV-2 , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda
3.
Med Image Comput Comput Assist Interv ; 13436: 717-725, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38500664

RESUMO

The inter-site variability of diffusion magnetic resonance imaging (dMRI) hinders the aggregation of dMRI data from multiple centers. This necessitates dMRI harmonization for removing non-biological site-effects. Recently, the emergence of high-resolution dMRI data across various connectome imaging studies allows the large-scale analysis of cortical micro-structure. Existing harmonization methods, however, perform poorly in the harmonization of dMRI data in cortical areas because they rely on image registration methods to factor out anatomical variations, which have known difficulty in aligning cortical folding patterns. To overcome this fundamental challenge in dMRI harmonization, we propose a framework of personalized dMRI harmonization on the cortical surface to improve the dMRI harmonization of gray matter by adaptively estimating the inter-site harmonization mappings. In our experiments, we demonstrate the effectiveness of the proposed method by applying it to harmonize dMRI across the Human Connectome Project (HCP) and the Lifespan Human Connectome Projects in Development (HCPD) studies and achieved much better performance in comparison with conventional methods based on image registration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA