Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 107: 129769, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670537

RESUMO

Among small-molecule CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) approved for metastatic breast cancers, abemaciclib has a more tolerable adverse effects in clinic. This is attributable to preferential inhibition of CDK4 over CDK6. In our search for a biased CDK4 inhibitor, we discovered a series of pyrimidine-indazole inhibitors. SAR studies led us to TQB3616 as a preferential CDK4 inhibitor. TQB3616 exhibited improvements in both enzymatic and cellular proliferation inhibitory potency when tested side-by-side with the FDA approved palbociclib and abemaciclib. TQB3616 also possessed favorable PK profile in multiple species. These differentiated properties, together with excellent GLP safety profile warranted TQB3616 moving to clinic. TQB3616 entered into clinical development in 2019 and currently in phase III clinical trials (NCT05375461, NCT05365178).

2.
Signal Transduct Target Ther ; 8(1): 338, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37679326

RESUMO

Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.


Assuntos
Dano ao DNA , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Morte Celular , Dano ao DNA/genética , Instabilidade Genômica/genética
3.
Front Plant Sci ; 13: 849421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548303

RESUMO

The mechanical strength of the stalk affects the lodging resistance and digestibility of the stalk in maize. The molecular mechanisms regulating the brittleness of stalks in maize remain undefined. In this study, we constructed the maize brittle stalk mutant (bk5) by crossing the W22:Mu line with the Zheng 58 line. The brittle phenotype of the mutant bk5 existed in all of the plant organs after the five-leaf stage. Compared to wild-type (WT) plants, the sclerenchyma cells of bk5 stalks had a looser cell arrangement and thinner cell wall. Determination of cell wall composition showed that obvious differences in cellulose content, lignin content, starch content, and total soluble sugar were found between bk5 and WT stalks. Furthermore, we identified 226 differentially expressed genes (DEGs), with 164 genes significantly upregulated and 62 genes significantly downregulated in RNA-seq analysis. Some pathways related to cellulose and lignin synthesis, such as endocytosis and glycosylphosphatidylinositol (GPI)-anchored biosynthesis, were identified by the Kyoto Encyclopedia of Gene and Genomes (KEGG) and gene ontology (GO) analysis. In bulked-segregant sequence analysis (BSA-seq), we detected 2,931,692 high-quality Single Nucleotide Polymorphisms (SNPs) and identified five overlapped regions (11.2 Mb) containing 17 candidate genes with missense mutations or premature termination codons using the SNP-index methods. Some genes were involved in the cellulose synthesis-related genes such as ENTH/ANTH/VHS superfamily protein gene (endocytosis-related gene) and the lignin synthesis-related genes such as the cytochrome p450 gene. Some of these candidate genes identified from BSA-seq also existed with differential expression in RNA-seq analysis. These findings increase our understanding of the molecular mechanisms regulating the brittle stalk phenotype in maize.

4.
Bioorg Med Chem Lett ; 66: 128734, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436589

RESUMO

We previously described the discovery of a novel indole series compounds as oral SERD for ER positive breast cancer treatment. Further SAR exploration focusing on substitutions on indole moiety of compound 12 led to the discovery of a clinical candidate LX-039. We report herein its profound anti-tumor activity, desirable ER antagonistic characteristics combined with favorable pharmacokinetic and preliminary safety properties. LX-039 is currently in clinical trial (NCT04097756).


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Administração Oral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ensaios Clínicos como Assunto , Receptor alfa de Estrogênio , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia
5.
Bioorg Med Chem Lett ; 30(22): 127601, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035677

RESUMO

Most estrogen receptor positive (ER +) breast cancers depend on ER signaling pathway to develop. Clinical application of SERD fulvestrant effectively degraded ER, blocked its function and prolonged progression free survival of ER + breast cancer patients. However, current SERD suffers from limited bioavailability, therefore is given as intramuscular (IM) injection. In this paper, we report herein a novel indole series compounds with nanomolar range ER degradation potencies and oral systemic exposures. Selected compounds suppressed tumor growth in vivo in ER + MCF7 breast cancer CDX model via p.o. administration. All those data supported further optimizations of this analog to develop preclinical candidate as oral SERD for ER + breast cancer's treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Indóis/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/administração & dosagem , Indóis/síntese química , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
6.
Hum Mol Genet ; 25(11): 2182-2193, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053713

RESUMO

The most common congenital disorder of glycosylation (CDG), phosphomannomutase 2 (PMM2)-CDG, is caused by mutations in PMM2 that limit availability of mannose precursors required for protein N-glycosylation. The disorder has no therapy and there are no models to test new treatments. We generated compound heterozygous mice with the R137H and F115L mutations in Pmm2 that correspond to the most prevalent alleles found in patients with PMM2-CDG. Many Pmm2R137H/F115L mice died prenatally, while survivors had significantly stunted growth. These animals and cells derived from them showed protein glycosylation deficiencies similar to those found in patients with PMM2-CDG. Growth-related glycoproteins insulin-like growth factor (IGF) 1, IGF binding protein-3 and acid-labile subunit, along with antithrombin III, were all deficient in Pmm2R137H/F115L mice, but their levels in heterozygous mice were comparable to wild-type (WT) littermates. These imbalances, resulting from defective glycosylation, are likely the cause of the stunted growth seen both in our model and in PMM2-CDG patients. Both Pmm2R137H/F115L mouse and PMM2-CDG patient-derived fibroblasts displayed reductions in PMM activity, guanosine diphosphate mannose, lipid-linked oligosaccharide precursor and total cellular protein glycosylation, along with hypoglycosylation of a new endogenous biomarker, glycoprotein 130 (gp130). Over-expression of WT-PMM2 in patient-derived fibroblasts rescued all these defects, showing that restoration of mutant PMM2 activity is a viable therapeutic strategy. This functional mouse model of PMM2-CDG, in vitro assays and identification of the novel gp130 biomarker all shed light on the human disease, and moreover, provide the essential tools to test potential therapeutics for this untreatable disease.


Assuntos
Biomarcadores , Defeitos Congênitos da Glicosilação/genética , Receptor gp130 de Citocina/genética , Fosfotransferases (Fosfomutases)/genética , Animais , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Receptor gp130 de Citocina/biossíntese , Modelos Animais de Doenças , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Genótipo , Glicosilação , Humanos , Manose/genética , Manose/metabolismo , Camundongos , Mutação
7.
Proc Natl Acad Sci U S A ; 105(17): 6433-8, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18427108

RESUMO

The mosquito Anopheles gambiae is the principal Afrotropical vector for human malaria. A central component of its vectorial capacity is the ability to maintain sufficient populations of adults. During both adult and preadult (larval) stages, the mosquitoes depend on the ability to recognize and respond to chemical cues that mediate feeding and survival. In this study, we used a behavioral assay to identify a range of odorant-specific responses of An. gambiae larvae that are dependent on the integrity of the larval antennae. Parallel molecular analyses have identified a subset of the An. gambiae odorant receptors (AgOrs) that are localized to discrete neurons within the larval antennae and facilitate odor-evoked responses in Xenopus oocytes that are consistent with the larval behavioral spectrum. These studies shed light on chemosensory-driven behaviors and represent molecular and cellular characterization of olfactory processes in mosquito larvae. These advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in larval-stage mosquitoes to reduce the catastrophic effects of malaria and other diseases.


Assuntos
Anopheles/fisiologia , Comportamento Animal , Condutos Olfatórios/fisiologia , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/ultraestrutura , Animais , Anopheles/efeitos dos fármacos , Anopheles/ultraestrutura , Comportamento Animal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/ultraestrutura , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Odorantes , Condutos Olfatórios/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Xenopus
8.
Insect Biochem Mol Biol ; 36(3): 169-76, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16503478

RESUMO

Members of the Culex pipens mosquito group including C. quinquefasciatus are responsible for the transmission of Bancroftian filarisis as well as West Nile Virus (WNV) in the United States. As is the case for other mosquitoes, the host preference of this disease vector relies on olfaction and accordingly mediated via G-protein coupled signal transduction pathways. Here, we identify and characterize CqOR7, the first candidate member of the odorant receptor gene family from C. quinquefasciatus. CqOR7 displays extremely high primary amino acid conservation with other apparent orthologs including AaOR7, from the Dengue virus vector mosquito Aedes aegypti, AgOR7 from the malaria vector Anopheles gambiae and DOr83b from the fruit fly Drosophila melanogaster that form an essential non-conventional odorant receptor sub-family. CqOR7 transcripts can be detected in adult chemosensory tissues and during several pre-adult stages of C. quinquefasciatus, and the CqOR7 protein is localized to characteristic olfactory tissues such as the antennae and maxillary palps as well as the proboscis, a typically gustatory appendage. These results suggest that CqOR7 and its orthologs are likely to play a role in the chemosensory processes of Culicine and other mosquitoes that underlie their vectorial capacity.


Assuntos
Culex/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Receptores Odorantes/genética , Vírus do Nilo Ocidental , Animais , Culex/virologia , Feminino , Insetos Vetores/virologia , Olfato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...