Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(17): 9611-9620, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646906

RESUMO

Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.


Assuntos
Proteínas de Bactérias , Citrus , Ácidos Mandélicos , Doenças das Plantas , Sistemas de Secreção Tipo III , Xanthomonas , Xanthomonas/efeitos dos fármacos , Xanthomonas/patogenicidade , Citrus/microbiologia , Citrus/química , Doenças das Plantas/microbiologia , Virulência/efeitos dos fármacos , Ácidos Mandélicos/farmacologia , Ácidos Mandélicos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/genética , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Desenho de Fármacos
2.
Anal Chem ; 95(49): 18233-18240, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016786

RESUMO

Owing to the remarkable catalytic attributes, single-atom catalysts (SACs) have exhibited promising application prospects as the substitutes of natural enzymes. However, the low loading amount of atomic sites on typical SACs (no more than 5 wt %) significantly restricts their increased capability. Hereby, a layer growth inhibitor protocol was attempted to optimize anchoring isolated Co atoms efficiently on ultrathin monolayer layered double hydroxides (LDHs). Superior to the conventional multiple-layer LDHs, the synthesized monolayer LDHs (7.29 nm-thick) served as the emerging support for dispersing substantial active sites and featured a dramatic loading content of 32.5 wt %. Through X-ray absorption spectroscopy, the atomically dispersed active centers on Co SACs were verified as Co-N4 moieties. The results of radical scavenger experiments and electron paramagnetic resonance spectroscopy showed that Co SACs were favorable to the high yield of reactive oxygen species originating from the decomposition of H2O2. Therefore, Co SACs functioned as a sensitive enhancer to drastically boost the luminol-H2O2 chemiluminescence intensity by ∼4713-fold, which excelled drastically over these previously reported SACs. Furthermore, Co SACs were adopted as chemiluminescent probes for the quantitation of chlorothalonil, wherein a low detection limit of 49 pg mL-1 (3σ) was achieved. Additionally, the successful application in recovery trials demonstrated the favorable feasibility of Co SACs. The facile layer growth inhibitor protocol affords SACs with improved loading properties and even superior catalytic performances for sensitive luminescent bioassays.

3.
Anal Chim Acta ; 1232: 340478, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257748

RESUMO

In view of the optimal catalytic efficiency (∼100%), single-atom site catalysts are being widely exploited in a range of areas including organic synthesis, energy conversion, environmental remediation, biotherapy, etc. However, low loading ratio of the unitary active sites on single-atom site catalysts dramatically hinders the remarkable improvement of their catalytic activity. Hereby, a facile low-temperature reduction protocol was adopted for synthesizing CoN4-supported Co2N metal clusters on graphitic carbon nitride, which show the remarkably superior chemiluminescent (CL) catalytic capacity than some reported pure single-atom site catalysts. Nitrogen-encapsulated Co2N clusters coupled with isolated Co-N4 moieties (Co2N@Co-N4) endowed the synergetic catalysts with high Co content of 53.2 wt%. Through X-ray absorption spectroscopy, the synergetic active sites (Co2N@Co-N4) afforded the CoN4-supported Co2N clusters with the remarkable catalytic activity for accelerating the decomposition of H2O2 to produce extensive superoxide radical anion rather than singlet oxygen or hydroxyl radical. Therefore, the CoN4-supported Co2N clusters possessed the superb enhancement effect on luminol-H2O2 CL reaction by ∼22829 times. The CoN4-supported Co2N clusters were utilized as signal probes to establish a CL immunochromatographic assay (ICA) platform for quantitating mycotoxins. Herein, aflatoxin B1 was employed as a mode analyte and the limit of detection was as low as 0.33 pg mL-1 (3σ). As a proof-of-principle work, the developed ICA protocol was successfully employed on the detection of aflatoxin B1 spiked in Angelica dahurica and Ganoderma lucidum with acceptable recoveries of 84.0-107.0%. The ideal practicability of the work elucidates that CoN4-supported Co2N clusters showed a new perspective for developing the sensitive CL biosensing.


Assuntos
Radical Hidroxila , Luminol , Luminol/química , Superóxidos , Oxigênio Singlete/química , Peróxido de Hidrogênio/química , Limite de Detecção , Aflatoxina B1 , Metais , Nitrogênio , Imunoensaio
4.
Anal Chem ; 94(39): 13533-13539, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36150091

RESUMO

Single atom-dispersed catalysts (SADCs) with highly exposed active sites can be used as sensitive signal probes because of their superior catalytic efficiency. However, the dispersed atoms tend to aggregate, restricting the loading capacity of metal atoms. Herein, the defective sites on Zr-oxo clusters of metal-organic frameworks (MOFs) UiO-66-NH2 were modulated by excessive acetic acid and utilized for confining metal atoms with high loading capacity. To verify the feasibility of the designed strategy, the Co element was loaded onto MOFs UiO-66-NH2 to prepare SADCs with desirable Fenton-like activity. The prepared Co SADCs at a low concentration of 1.0 µg mL-1 are found to boost chemiluminescent (CL) emission for 3700 times due to the significantly improved Co content of 5.55 wt %. The superior CL enhancement efficiency is ascribed to reactive oxygen species generated by the accelerated decay of H2O2. To verify the application potential in CL assay, they were used as signal probes to establish an immunoassay method for carbendazim with a dynamic range of 1.0 pg mL-1 to 25 ng mL-1 and a limit of detection of 0.33 pg mL-1. This defective site modulation strategy paves an avenue for preparing SADCs with a high CL response by improving the loading capacity of metal atoms.


Assuntos
Estruturas Metalorgânicas , Acetatos , Peróxido de Hidrogênio , Estruturas Metalorgânicas/química , Ácidos Ftálicos , Espécies Reativas de Oxigênio
5.
Anal Chem ; 94(32): 11449-11456, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35938606

RESUMO

In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.


Assuntos
Peróxido de Hidrogênio , Medições Luminescentes , Catálise , Peróxido de Hidrogênio/química , Luminescência , Medições Luminescentes/métodos , Luminol/química
6.
Anal Chem ; 94(7): 3400-3407, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138805

RESUMO

Superior to traditional nanoscale catalysts, single-atom site catalysts (SASCs) show such merits as maximal catalysis efficiency and outstanding catalytic activity for the construction of analytical methodological platforms. Hereby, an in situ etching strategy was designed to prepare yolk-shell Co SASCs derived from ZIF-8@SiO2 nanoparticles. On the basis of direct chemical interactions between precursors and supports, the Co element with isolated atomic dispersion was anchored on ZIF-8@SiO2 nanoparticles. The Co SASCs possess high Fenton-like activity and thus can catalyze the decomposition of H2O2 to produce massive superoxide radical anions instead of singlet oxygen and hydroxyl radicals. With the activity for producing superoxide radical anion, Co SASCs can greatly improve the chemiluminescent (CL) response of a luminol system by 3133.7 times. Furthermore, the SASCs with active sites of Co-O5 moieties were utilized as the CL probes for establishment of an immunoassay method for sensitive detection of mycotoxins by adopting aflatoxin B1 as a mode analyte. The quantitation range is 10-1000 pg/mL, and the limit of detection is 0.44 pg/mL (3σ) for aflatoxin B1. The proof-of-principle work elucidates the practicability of direct chemical interactions between precursors and supports for forming SASCs with ultrahigh CL response, which can be extended to the exploitation of more sorts of SASCs for tracing biological binding events.


Assuntos
Peróxido de Hidrogênio , Micotoxinas , Catálise , Peróxido de Hidrogênio/química , Imunoensaio , Dióxido de Silício
7.
ACS Appl Mater Interfaces ; 13(51): 60945-60954, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34914377

RESUMO

A facile, one-step doping protocol was adopted to synthesize Co single atomic site catalysts (SASCs) in UiO-66 metal-organic frameworks. In view of highly uniform active sites of Co-O6 moieties, the SASCs specifically contribute to catalyzing the generation of a large amount of singlet oxygen instead of superoxide or hydroxyl radicals, which endows Co SASCs with a the remarkable enhancement effect (∼3775 times) on luminol chemiluminescent (CL) emission. Interestingly, monolayer titanium carbide MXenes can drastically quench the CL signal of the Co SASC-boosted luminol reaction by ∼94.6% as highly efficient luminescent absorbents. Furthermore, the emitter-quencher pair of Co SASCs and titanium carbide MXenes was successfully adopted to develop an immunoassay method for cardiac troponin I (cTnI) on an immunochromatographic test strip platform. With a sandwich immunoreaction mode, a titanium carbide MXene-labeled cTnI tracer antibody was captured on the test line of a test strip, which significantly inhibited the CL response of the Co SACs-boosted luminol system. The dynamic range for quantitating cTnI is 1.0-100 pg mL-1, with a detection limit of 0.33 pg mL-1 (3σ). The test strip was successfully used to detect cTnI in human serum samples collected from cardiopathy patients. This proof-of-principle work manifests both the CL enhancement of SASCs and the quenching behavior of MXenes, which shows the thrilling prospects of combinational usage of the two functionalized nanomaterials for tracking biological recognition events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...