Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(9): 093401, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302815

RESUMO

We observe and study a special ground state of bosons with two spin states in an optical lattice: the spin-Mott insulator, a state that consists of repulsively bound pairs that is insulating for both spin and charge transport. Because of the pairing gap created by the interaction anisotropy, it can be prepared with low entropy and can serve as a starting point for adiabatic state preparation. We find that the stability of the spin-Mott state depends on the pairing energy, and observe two qualitatively different decay regimes, one of which exhibits protection by the gap.

2.
Phys Rev Lett ; 126(16): 163203, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961481

RESUMO

Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy term proportional to (S^{z})^{2} that plays an important role in stabilizing magnetism for low-dimensional magnetic materials. Here we explore nonequilibrium spin dynamics and observe a resonant effect in the spin alignment as a function of lattice depth when exchange coupling and on-site anisotropy are similar. Our results are supported by many-body numerical simulations and are captured by the analytical solution of a two-site model.

3.
Opt Express ; 26(13): 16726-16735, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119495

RESUMO

The precise calibration of optical lattice depth is an important step in the experiments of ultracold atoms in optical lattices. The Raman-Nath diffraction method, as the most commonly used method of calibrating optical lattice depth, has a limited range of validity and the calibration accuracy is not high enough. Based on multiple pulses Kapitza-Dirac diffraction, we propose and demonstrate a new calibration method by measuring the fully transfer fidelity of the first diffraction order. The high sensitivity of the transfer fidelity to the lattice depth ensures the highly precision calibration of the optical lattice depth. For each lattice depth measured, the calibration uncertainty is further reduced to less than 0.6% by applying the Back-Propagation Neural Network Algorithm. The accuracy of this method is almost one order of magnitude higher than that of the Raman-Nath diffraction method, and it has a wide range of validity applicable to both shallow lattices and deep lattices.

4.
Rev Sci Instrum ; 88(5): 053104, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571428

RESUMO

We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ∼6nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA