Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Microbiol ; 15: 1377338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741733

RESUMO

Grasslands are among the most widespread environments on Earth, yet we still have poor knowledge of their microbial-mediated carbon cycling in the context of human activity and climate change. We conducted a systematic bibliometric analysis of 1,660 literature focusing on microbial-mediated grassland carbon cycling in the Scopus database from 1990 to 2022. We observed a steep increase in the number of multidisciplinary and interdisciplinary studies since the 2000s, with focus areas on the top 10 subject categories, especially in Agricultural and Biological Sciences. Additionally, the USA, Australia, Germany, the United Kingdom, China, and Austria exhibited high levels of productivity. We revealed that the eight papers have been pivotal in shaping future research in this field, and the main research topics concentrate on microbial respiration, interaction relationships, microbial biomass carbon, methane oxidation, and high-throughput sequencing. We further highlight that the new research hotspots in microbial-mediated grassland carbon cycling are mainly focused on the keywords "carbon use efficiency," "enzyme activity," "microbial community," and "high throughput sequencing." Our bibliometric analysis in the past three decades has provided insights into a multidisciplinary and evolving field of microbial-mediated grassland carbon cycling, not merely summarizing the literature but also critically identifying research hotspots and trends, the intellectual base, and interconnections within the existing body of collective knowledge and signposting the path for future research directions.

2.
iScience ; 27(3): 109229, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455977

RESUMO

Current studies on the immune microenvironment of colorectal cancer (CRC) were mostly limited to the tissue level, lacking relevant studies in the peripheral blood, and failed to describe its alterations in the whole process of adenocarcinoma formation, especially of adenoma carcinogenesis. Here, we constructed a large-scale population cohort and used the CyTOF to explore the changes of various immune cell subsets in peripheral blood of CRC. We found monocytes and basophils cells were significantly higher in adenocarcinoma patients. Compared with early-stage CRC, effector CD4+T cells and naive B cells were higher in patients with lymph node metastasis, whereas the basophils were lower. We also performed random forest algorithm and found monocytes play the key role in carcinogenesis. Our study draws a peripheral blood immune cell landscape of the occurrence and development of CRC at the single-cell level and provides a reference for other researchers.

3.
Biosci Trends ; 18(1): 105-107, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38325822

RESUMO

Lactylation of α-myosin heavy chain (α-MHC) has recently been reported to preserve sarcomeric structure and function and attenuate the development of heart failure. Specifically, lactylation enhanced the interaction of α-MHC with the sarcomeric protein Titin, thereby maintaining normal sarcomeric structure and myocardial contractile function. Furthermore, the administration of lactate or inhibition of lactate efflux potentially treats heart failure by restoring lactylation of α-MHC and the interaction of α-MHC with Titin. This finding highlights the significant role of α-MHC lactylation in myocardial diseases and presents a new therapeutic target for the treatment of heart failure.


Assuntos
Insuficiência Cardíaca , Ácido Láctico , Humanos , Conectina/metabolismo , Ácido Láctico/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Proteínas/metabolismo , Cadeias Pesadas de Miosina/metabolismo
4.
J Econ Entomol ; 117(2): 388-400, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38266252

RESUMO

Artificial diets for silkworms overcome the seasonal limitations of traditional rearing methods with fresh mulberry leaves. However, the current wet artificial diets, steamed at high temperatures, are not favored by silkworms, and they are cumbersome and challenging to preserve. These conditions adversely affected the development of artificial diet-based sericulture production. In this study, we disinfected dry powder diets with radiation and added distilled water without steaming before use. Then, the nutritional value of finished diets and their impact on silkworm development was assessed. Compared with steamed diets, nonsteamed diets were more attractive to silkworms. Chemical assays showed significantly more essential nutrients for silkworms, including l-ascorbic acid, vitamin B1, vitamin B2, and urease in nonsteamed diets than in steamed diets. Feeding fifth-instar silkworm larvae with nonsteamed diets significantly improved the ammonia utilization efficiency of the diet and increased the cocoon shell rate and diet/silk protein conversion efficiency by 5.9% and 13.3%, respectively. When fed with nonsteamed diets, the abundance of aerobic microorganisms in silkworm intestines increased and the abundance of pathogenic bacteria decreased. Furthermore, the vitality of the silkworm, measured by the dead worm cocoon rate, significantly improved by 16.90%. In summary, preparing sterile wet diets without high-temperature steaming effectively improved the nutritional value of the diet and enhanced silkworm growth.


Assuntos
Bombyx , Morus , Animais , Seda/metabolismo , Dieta , Larva , Valor Nutritivo
5.
RSC Adv ; 14(2): 771-778, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174283

RESUMO

Pd-based bimetallic or multimetallic nanocrystals are considered to be potential electrocatalysts for cathodic oxygen reduction reaction (ORR) in fuel cells. Although much advance has been made, the synthesis of component-controlled Pd-Sn alloy nanocrystals or corresponding nanohybrids is still challenging, and the electrocatalytic ORR properties are not fully explored. Herein, component-controlled synthesis of PdxSny nanocrystals (including Pd3Sn, Pd2Sn, Pd3Sn2, and PdSn) has been realized, which are in situ grown or deposited on pre-treated multi-walled carbon nanotubes (CNTs) to form well-coupled nanohybrids (NHs) by a facile one-pot non-hydrolytic system thermolysis method. In alkaline media, all the resultant PdxSny/CNTs NHs are effective at catalyzing ORR. Among them, the Pd3Sn/CNTs NHs exhibit the best catalytic activity with the half-wave potential of 0.85 V (vs. RHE), good cyclic stability, and excellent methanol-tolerant capability due to the suited Pd-Sn alloy component and its strong interaction or efficient electronic coupling with CNTs. This work is conducive to the advancement of Pd-based nanoalloy catalysts by combining component engineering and a hybridization strategy and promoting their application in clean energy devices.

6.
Small Methods ; : e2301279, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189527

RESUMO

Transition metal phosphides (TMPs) and phosphates (TM-Pis) nanostructures are promising functional materials for energy storage and conversion. Nonetheless, controllable synthesis of crystalline/amorphous heterogeneous TMPs/TM-Pis nanohybrids or related nanoarchitectures remains challenging, and their electrocatalytic applications toward overall water splitting (OWS) are not fully explored. Herein, the Ni2 P nanocrystals anchored on amorphous V-Pi nanosheet based porous flower-like nanohybrid architectures that are self-supported on carbon cloth (CC) substrate (Ni2 P/V-Pi/CC) are fabricated by conformal oxidation and phosphorization of pre-synthesized NiV-LDH/CC. Due to the unique microstructures and strong synergistic effects of crystalline Ni2 P and amorphous V-Pi components, the obtained Ni2 P/V-Pi/CC owns abundant active sites, suitable surface/interface electronic structure and optimized adsorption-desorption of reaction intermediates, resulting in outstanding electrocatalytic performances toward hydrogen and oxygen evolution reactions in alkaline media. Correspondingly, the assembled Ni2 P/V-Pi/CC||Ni2 P/V-Pi/CC electrolyzer only needs an ultralow cell voltage (1.44 V) to deliver 10 mA cm-2 water-splitting currents, exceeding its counterparts, recently reported bifunctional catalysts-based devices, and Pt/C/CC||IrO2 /CC pairs. Moreover, the Ni2 P/V-Pi/CC||Ni2 P/V-Pi/CC manifests remarkable stability. Also, such device shows a certain prospect for OWS in acidic media. This work may spur the development of TMPs/TMPis-based nanohybrid architectures by combining structure and phase engineering, and push their applications in OWS or other clean energy options.

7.
Microorganisms ; 12(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276196

RESUMO

Subterranean karst caves are windows into the terrestrial subsurface to deconstruct the dimensions of mycobiome fingerprints. However, impeded by the constraints of remote locations, the inaccessibility of specimens and technical limitations, the mycobiome of subterranean karst caves has remained largely unknown. Weathered rock and sediment samples were collected from Luohandu cave (Guilin, Southern China) and subjected to Illumina Hiseq sequencing of ITS1 genes. A total of 267 known genera and 90 known orders in 15 phyla were revealed in the mycobiomes. Ascomycota dominated all samples, followed by Basidiomycota and Mortierellomycota. The sediments possessed the relatively highest alpha diversity and were significantly different from weathered rocks according to the diversity indices and richness metrics. Fifteen families and eight genera with significant differences were detected in the sediment samples. The Ca/Mg ratio appeared to significantly affect the structure of the mycobiome communities. Ascomycota appeared to exert a controlling influence on the mycobiome co-occurrence network of the sediments, while Ascomycota and Basidiomycota were found to be the main phyla in the mycobiome co-occurrence network of weathered rocks. Our results provide a more comprehensive dimension to the mycobiome fingerprints of Luohandu cave and a new window into the mycobiome communities and the ecology of subterranean karst cave ecosystems.

8.
Clin Endocrinol (Oxf) ; 100(1): 87-95, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964632

RESUMO

OBJECTIVE: Patients with Graves' disease often engage in shared decision-making to select an individualised treatment regimen from multiple options. Radioactive iodine (RAI) is one of the treatment choices for their condition, aims to improve quality of life and well-being. Likewise, dissatisfaction with treatment outcomes can result in decision regret. We employed validated questionnaires to assess the prospective quality of life, decision regret and relative factors involved in decision-making of patients with late hypothyroidism after RAI therapy. METHODS: A questionnaire survey was conducted among patients in hypothyroidism status for more than 1 year after RAI therapy. Disease-specific and generic QoL were assessed using the short form of thyroid-related patient-reported outcome (ThyPRO-39) questionnaire. Patient satisfaction regarding their decision to undergo RAI was assessed using the Decision Regret Scale (DRS) and patients were asked about the importance of relative factors in decision-making. RESULTS: Of 254 patients who responded to the survey, the mean age of patients was 45.3 years (range: 18-78 years) and the median time from RAI therapy to survey was 4 years (range: 1-30 years). Patients' median and mean DRS score were 34.4 and 38.8 (range: 0-100), respectively. A total of 100 (39.4%) patients express absent-to-mild regret (score: 0-25), 154 (60.6%) patients express moderate-to-severe regret (score: >25). The mean score of the absent-to-mild regret group were significantly higher than those of the moderate-to-severe regret group on most ThyPRO-39 scales. A statistically significant positive correlation was observed between DRS score and most ThyPRO-39 scale score. There was a significant positive association between higher DRS score and longer time intervals after RAI treatment, a brief duration of hyperthyroidism, and the significance of long-time outpatient follow-up. More decision regret was negatively associated Iodine-free diet, ineffectiveness of ATD, fear of surgery. CONCLUSION: Impairment of quality of life was positively correlated with decision regret in patients with late-hypothyroidism after radioiodine therapy. Patients with insufficient information support before decision-making are more likely to have higher decision regret after treatment. Our findings suggest that health providers should fully communicate with patients and provide information support in multiple dimensions during the shared-decision-making process.


Assuntos
Doença de Graves , Hipotireoidismo , Neoplasias da Glândula Tireoide , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Radioisótopos do Iodo/uso terapêutico , Qualidade de Vida , Estudos Prospectivos , Doença de Graves/radioterapia , Doença de Graves/cirurgia , Hipotireoidismo/induzido quimicamente , Emoções
9.
Small ; 20(10): e2303927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875651

RESUMO

The crystalline/amorphous heterophase nanostructures are promising functional materials for biomedicals, catalysis, energy conversion, and storage. Despite great progress is achieved, facile synthesis of crystalline metal/amorphous multinary metal oxides nanohybrids remains challenging, and their electrocatalytic oxygen evolution reaction (OER) performance along with the catalytic mechanism are not systematically investigated. Herein, two kinds of ultrafine crystalline metal domains coupled with amorphous Ni-Fe-Mo oxides heterophase nanohybrids, including Ni/Ni0.5-a Fe0.5 Mo1.5 Ox and Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox , are fabricated through controllable reduction of amorphous Ni0.5 Fe0.5 Mo1.5 Ox precursors by simply tuning the amount of used reductant. Due to the suited component in metal domains, the special structure with dense crystalline/amorphous interfaces, and strong electronic coupling of their components, the resultant Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids show greatly enhanced OER activity with a low overpotential (278 mV) to reach 10 mA cm-2 current density and ultrahigh turnover frequency (38160 h-1 ), outperforming Ni/Ni0.5-a Fe0.5 Mo1.5 Ox , Ni0.5 Fe0.5 Mo1.5 Ox precursors, commercial IrO2 , and most of recently reported OER catalysts. Also, such Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids manifest good catalytic stability. As revealed by a series of spectroscopy and electrochemical analyses, their OER mechanism follows the lattice-oxygen-mediated (LOM) pathway. This work may shed light on the design of advanced heterophase nanohybrids, and promote their applications in water splitting, metal-air batteries, or other clean energy fields.

10.
Mol Plant Pathol ; 25(1): e13397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902589

RESUMO

Rhizoctonia solani AG-1 IA causes a necrotrophic rice disease and is a serious threat to rice production. To date, only a few effectors have been characterized in AG-1 IA. We previously identified RsIA_CtaG/Cox11 and showed that infiltration of the recombinant protein into rice leaves caused disease-like symptoms. In the present study, we further characterized the functionality of RsIA_CtaG/Cox11. RsIA_CtaG/Cox11 is an alternative transcript of cytochrome c oxidase copper chaperone Cox11 that starts from the second AUG codon, but contains a functional secretion signal peptide. RNA interference with RsIA_CtaG/Cox11 reduced the pathogenicity of AG-1 IA towards rice and Nicotiana benthamiana without affecting its fitness or mycelial morphology. Transient expression of the RsIA_CtaG/Cox11-GFP fusion protein demonstrated the localization of RsIA_CtaG/Cox11 to mitochondria. Agro-infiltration of RsIA_CtaG/Cox11 into N. benthamiana leaves inhibited cell death by BAX and INF1. In contrast to rice, agro-infiltration of RsIA_CtaG/Cox11 did not induce cell death in N. benthamiana. However, cell death was observed when it was coinfiltrated with Os_CoxVIIa, which encodes a subunit of cytochrome c oxidase. Os_CoxVIIa appeared to interact with RsIA_CtaG/Cox11. The cell death triggered by coexpression of RsIA_CtaG/Cox11 and Os_CoxVIIa is independent of the leucine-rich repeat receptor kinases BAK1/SOBIR1 and enhanced the susceptibility of N. benthamiana to AG-1 IA. Two of the three evolutionarily conserved cysteine residues at positions 25 and 126 of RsIA_CtaG/Cox11 were essential for its immunosuppressive activity, but not for cell death induction. This report suggests that RsIA_CtaG/Cox11 appears to have a dual role in immunosuppression and cell death induction during pathogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oryza , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oryza/genética , Oryza/metabolismo , Mitocôndrias/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Imunidade Vegetal/genética , Morte Celular , Doenças das Plantas/genética
11.
Zool Res ; 44(6): 1132-1145, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37963840

RESUMO

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss. Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta (Aß) and tau metabolism, and that autophagy dysfunction exacerbates amyloidosis and tau pathology. Therefore, targeting autophagy may be an effective approach for the treatment of AD. Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases. This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models. Finally, the opportunities, difficulties, and future directions of autophagy targeting in AD therapy are discussed.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/veterinária , Peptídeos beta-Amiloides , Autofagia/fisiologia , Modelos Animais
12.
Microbiol Spectr ; : e0199223, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747896

RESUMO

Peatlands are important sources of the greenhouse gas methane emissions equipoised by methanogens and methanotrophs. However, knowledge about how microbial functional groups associated with methane production and oxidation respond to water table fluctuations has been limited to date. Here, methane-related microbial communities and the potentials of methane production and oxidation were determined along sectioned peat layers in a subalpine peatland across four Sphagnum-dominated sites with different water table levels. Methane fluxes were also monitored at these sites. The results showed that mcrA gene copies for methanogens were the highest in the 10- to 15-cm peat layer, which was also characterized by the maximum potential methane production (24.53 ± 1.83 nmol/g/h). Copy numbers of the pmoA gene for type Ia and Ib methanotrophs were enriched in the 0-5 cm peat layer with the highest potential methane oxidation (43.09 ± 3.44 nmol/g/h). For the type II methanotrophs, the pmoA gene copies were higher in the 10- to 15-cm peat layer. Hydrogenotrophic methanogens and type II methanotrophs dominated the methane functional groups. Deterministic process contributed more to methanogenic and methanotrophic community assemblages in comparison with stochastic process. The level of water table significantly shaped methanogenic and methanotrophic community structures and regulated methane fluxes. Compared with vascular plants, Sphagnum mosses significantly reduced the methane emissions in peatlands. Collectively, these findings enhance a comprehensive understanding of the effect of the water table level on methane functional groups, with consequential implications for reducing methane emissions within peatland ecosystems.IMPORTANCEThe water table level is recognized as a critical factor in regulating methane emissions, which are largely dependent on the balance of methanogens and methanotrophs. Previous studies on peat methane emissions have been mostly focused on spatial-temporal variations and the relationship with meteorological conditions. However, the role of the water table level in methane emissions remains unknown. In this work, four representative microhabitats along a water table gradient in a Sphagnum-dominated peatland were sampled to gain an insight into methane functional communities and methane emissions as affected by the water table level. The changes in methane-related microbial community structure and assembly were used to characterize the response to the water table level. This study improves the understanding of the changes in methane-related microbial communities and methane emissions with water table levels in peatlands.

13.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762665

RESUMO

Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.


Assuntos
Inseticidas , Mariposas , Oryza , Animais , Oryza/metabolismo , Mariposas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inseticidas/metabolismo
14.
Sci Total Environ ; 905: 166999, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714340

RESUMO

Archaea are important ecological components of microbial communities in various environments, but are currently poorly investigated in antimony (Sb) contaminated groundwater particularly on their ecological differences in comparison with bacteria. To address this issue, groundwater samples were collected from Xikuangshan aquifer along an Sb gradient and subjected to 16S rRNA gene amplicon sequencing and bioinformatic analysis. The results demonstrated that bacterial communities were more susceptibly affected by elevated Sb concentration than their archaeal counterparts, and the positive stimulation of Sb concentration on bacterial diversity coincided with the intermediate disturbance hypothesis. Overall, the balance of environmental variables (Sb, pH, and EC), competitive interactions, and stochastic events jointly regulated bacterial and archaeal communities. Linear fitting analysis revealed that Sb significantly drove the deterministic process (heterogeneous selection) of bacterial communities, whereas stochastic process (dispersal limitation) contributed more to archaeal community assembly. In contract, the assembly of Sb-resistant bacteria and archaea was dominated by the stochastic process (undominated), which implied the important role of diversification and drift instead of selection. Compared with Sb-resistant microorganisms, bacterial and archaeal communities showed lower niche width, which may result from the constraints of Sb concentration and competitive interaction. Moreover, Sb-resistant archaea had a higher niche than that of Sb-resistant bacteria via investing on flexible metabolic pathways such as organic metabolism, ammonia oxidation; and carbon fixation to enhance their competitiveness. Our results offered new insights into the ecological adaptation mechanisms of bacteria and archaea in Sb-contaminated groundwater.


Assuntos
Archaea , Água Subterrânea , Archaea/genética , Antimônio/análise , RNA Ribossômico 16S/genética , Bactérias/genética , Água Subterrânea/química
15.
MedComm (2020) ; 4(4): e345, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576863

RESUMO

Colorectal cancer (CRC) is a major malignancy threatening the health of people in China and screening could be effective for preventing the occurrence and reducing the mortality of CRC. We conducted a multicenter, prospective clinical study which recruited 4,245 high-risk CRC individuals defined as having positive risk-adapted scores or fecal immunochemical test (FIT) results, to evaluate the clinical performance of the multitarget fecal immunochemical and stool DNA (FIT-sDNA) test for CRC screening. Each participant was asked to provide a stool sample prior to bowel preparation, and FIT-sDNA test and FIT were performed independently of colonoscopy. We found that 186 (4.4%) were confirmed to have CRC, and 375 (8.8%) had advanced precancerous neoplasia among the high CRC risk individuals. The sensitivity of detecting CRC for FIT-sDNA test was 91.9% (95% CI, 86.8-95.3), compared with 62.4% (95% CI, 54.9-69.3) for FIT (P < 0.001). The sensitivity for detecting advanced precancerous neoplasia was 63.5% (95% CI, 58.3-68.3) for FIT-sDNA test, compared with 30.9% (95% CI, 26.3-35.6) for FIT (P < 0.001). Multitarget FIT-sDNA test detected more colorectal advanced neoplasia than FIT. Overall, these findings indicated that in areas with limited colonoscopy resources, FIT-sDNA test could be a promising further risk triaging modality to select patients for colonoscopy in CRC screening.

16.
Natl Sci Rev ; 10(8): nwad179, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554586

RESUMO

Activation of inflammasomes-immune system receptor sensor complexes that selectively activate inflammatory responses-has been associated with diverse human diseases, and many nanomedicine studies have reported that structurally and chemically diverse inorganic nanomaterials cause excessive inflammasome activation. Here, in stark contrast to reports of other inorganic nanomaterials, we find that nickel-cobalt alloy magnetic nanocrystals (NiCo NCs) actually inhibit activation of NLRP3, NLRC4 and AIM2 inflammasomes. We show that NiCo NCs disrupt the canonical inflammasome ASC speck formation process by downregulating the lncRNA Neat1, and experimentally confirm that the entry of NiCo NCs into cells is required for the observed inhibition of inflammasome activation. Furthermore, we find that NiCo NCs inhibit neutrophil recruitment in an acute peritonitis mouse model and relieve symptoms in a colitis mouse model, again by inhibiting inflammasome activation. Beyond demonstrating a highly surprising and apparently therapeutic impact for an inorganic nanomaterial on inflammatory responses, our work suggests that nickel- and cobalt-containing nanomaterials may offer an opportunity to design anti-inflammatory nanomedicines for the therapeutics of macrophage-mediated diseases.

17.
J Integr Med ; 21(5): 487-495, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544834

RESUMO

OBJECTIVE: This study tests the efficacy of Bletilla striata polysaccharide (BSP), carboxymethyl chitosan (CMC), baicalin (BA) and silver titanate (ST) in a wound dressings to fight infection, promote healing and provide superior biocompatibility. METHODS: The antibacterial activity of BA and ST was evaluated in vitro using the inhibition zone method. BA/ST/BSP/CMC porous sponge dressings were prepared and characterized. The biocompatibility of BA/ST/BSP/CMC was assessed using the cell counting kit-8 assay. The therapeutic effect of BA/ST/BSP/CMC was further investigated using the dorsal skin burn model in Sprague-Dawley rats. RESULTS: The wound dressing had good antibacterial activity against Escherichia coli and Staphylococcus aureus through BA and ST, while the combination of BSP and CMC played an important role in promoting wound healing. The BA/ST/BSP/CMC porous sponge dressings were prepared using a freeze-drying method with the concentrations of BA and ST at 20 and 0.83 mg/mL, respectively, and the optimal ratio of 5% BSP to 4% CMC was 1:3. The average porosity, water absorption and air permeability of BA/ST/BSP/CMC porous sponge dressings were measured to be 90.43%, 746.1% and 66.60%, respectively. After treatment for 3 and 7 days, the healing rates of the BA/ST/BSP/CMC group and BA/BSP/CMC group were significantly higher than those of the normal saline (NS) group and silver sulfadiazine (SSD) group (P < 0.05). Interleukin-1ß expression in the BA/ST/BSP/CMC group at 1 and 3 days was significantly lower than that in the other three groups (P < 0.05). After being treated for 3 days, vascular endothelial growth factor expression in the BA/BSP/CMC group and BA/ST/BSP/CMC group was significantly higher than that in the NS group and SSD group (P < 0.05). Inspection of histological sections showed that the BA/ST/BSP/CMC group and BA/BSP/CMC group began to develop scabbing and peeling of damaged skin after 3 days of treatment, indicating accelerated healing relative to the NS group and SSD group. CONCLUSION: The optimized concentration of BA/ST/BSP/CMC dressing was as follows: 6 mg BSP, 14.4 mg CMC, 0.5 mg ST and 12 mg BA. The BA/ST/BSP/CMC dressing, containing antibacterial constituents, was non-cytotoxic and effective in accelerating the healing of burn wounds, making it a promising candidate for wound healing. Please cite this article as: Gong YR, Zhang C, Xiang X, Wang ZB, Wang YQ, Su YH, Zhang HQ. Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing. J Integr Med. 2023; 21(5): 487-495.


Assuntos
Queimaduras , Quitosana , Ratos , Animais , Quitosana/farmacologia , Prata/farmacologia , Porosidade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Ratos Sprague-Dawley , Cicatrização , Polissacarídeos/farmacologia , Bandagens , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia , Sulfadiazina de Prata/farmacologia
18.
Nanotechnology ; 34(32)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37160110

RESUMO

Metal organic frameworks are an attractive platform to develop fascinating electrocatalysts for the oxidation of ascorbic acid (AA), and their different morphologies have been hinted in literature to impact their sensing performance. In this work, by varying the reaction medium of metal source and organic ligand, copper 2-hydroxybenzene-1,4-dicarboxylate (CuBDC-OH) nanosheets (NSs), nanorods (NRs) and bulk were generated. Thereinto, CuBDC-OH-NSs displayed the highest sensitivity of 151.99µA mM-1cm-2in the linear range of 12-1074µM, which is 1.5 times greater than that of CuBDC-OH NRs and 3.5 times greater than that of CuBDC-OH bulk. The electrochemical analyzes manifested that the superiority of nanosheets originated from higher oxidative current, larger electrochemical active surface area and lower charge transfer resistance, which enabling the efficient electro-oxidation of AA. Additionally, satisfactory selectivity, stability and reproducibility were obtained.

19.
In Vitro Cell Dev Biol Anim ; 59(4): 241-255, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37099179

RESUMO

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.


Assuntos
Adenina , Edição de Genes , Animais , Suínos , Éxons/genética , Mutação , Técnicas de Inativação de Genes
20.
Crit Rev Eukaryot Gene Expr ; 33(3): 61-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017670

RESUMO

This study aimed to identify the possible function and the molecular mechanism of hsa_circ_0007334 in human bone marrow mesenchymal stem cells (hBMSCs) osteogenic differentiation. The level of hsa_circ_0007334 was detected by means of quantitative real-time polymerase chain reaction (RT-qPCR). Alkaline phosphatase (ALP), RUNX2, osterix (OSX), and osteocalcin (OCN) were monitored to analyze the degree of osteogenic differentiation under routine culture or under the control of hsa_circ_0007334. The proliferation of hBMSCs was tested with a cell counting kit-8 (CCK-8) assay. The migration of hBMSCs was tested using the Transwell assay. Bioinformatics analysis was used to predict the possible targets of hsa_circ_0007334 or miR-144-3p. Dual-luciferase reporter assay system was used to analyze the combination between hsa_circ_0007334 and miR-144-3p. Hsa_circ_0007334 was upregulated in osteogenic differentiation of hBMSCs. Osteogenic differentiation increased by hsa_circ_0007334 in vitro was confirmed with levels of ALP and bone markers (RUNX2, OCN, OSX). hsa_circ_0007334 overexpression promoted osteogenic differentiation, proliferation, and migration of hBMSCs, and knockdown of hsa_circ_0007334 has the opposite effects. miR-144-3p was identified as the target of hsa_circ_0007334. The targeting genes of miR-144-3p are involved in osteogenic-differentia-tion-related biological processes (such as bone development, epithelial cell proliferation, and mesenchymal cell apoptotic prosess) and pathways (including FoxO and VEGF signaling pathway). Hsa_circ_0007334, therefore, presents itself as a promising biological for osteogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/genética , Osteogênese , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diferenciação Celular , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...