Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2411100121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116132

RESUMO

Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.


Assuntos
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reconhecimento da Imunidade Inata
2.
J Integr Plant Biol ; 66(2): 228-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351714

RESUMO

Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.


Assuntos
Frutas , Magnoliopsida , Animais , Feminino , Frutas/genética , Filogenia , Magnoliopsida/genética , Ovário , Sementes/genética
3.
Nature ; 621(7978): 423-430, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674078

RESUMO

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Assuntos
Códon de Iniciação , Conformação de Ácido Nucleico , RNA de Cadeia Dupla , RNA Mensageiro , Humanos , Arabidopsis/genética , Arabidopsis/imunologia , Códon de Iniciação/genética , Reconhecimento da Imunidade Inata , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Ribossomos/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Aprendizado Profundo
4.
Curr Opin Plant Biol ; 73: 102352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934653

RESUMO

In the past 30 years, our knowledge of how nonexpressor of pathogenesis-related genes 1 (NPR1) serves as a master regulator of salicylic acid (SA)-mediated immune responses in plants has been informed largely by molecular genetic studies. Despite extensive efforts, the biochemical functions of this protein in promoting plant survival against a wide range of pathogens and abiotic stresses are not completely understood. Recent breakthroughs in cellular and structural analyses of NPR1 and its paralogs have provided a molecular framework for reinterpreting decades of genetic observations and have revealed new functions of these proteins. Besides NPR1's well-known nuclear activity in inducing stress-responsive genes, it has also been shown to control stress protein homeostasis in the cytoplasm. Structurally, NPR4's direct binding to SA has been visualized at the molecular level. Analysis of the cryo-EM and crystal structures of NPR1 reveals a bird-shaped homodimer containing a unique zinc finger. Furthermore, the TGA32-NPR12-TGA32 complex has been imaged, uncovering a dimeric NPR1 bridging two TGA3 transcription factor dimers as part of an enhanceosome complex to induce defense gene expression. These new findings will shape future research directions for deciphering NPR functions in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Transdução de Sinais , Imunidade Vegetal/genética , Núcleo Celular/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Mol Biol Evol ; 37(11): 3188-3210, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652014

RESUMO

Asterids are one of the most successful angiosperm lineages, exhibiting extensive morphological diversity and including a number of important crops. Despite their biological prominence and value to humans, the deep asterid phylogeny has not been fully resolved, and the evolutionary landscape underlying their radiation remains unknown. To resolve the asterid phylogeny, we sequenced 213 transcriptomes/genomes and combined them with other data sets, representing all accepted orders and nearly all families of asterids. We show fully supported monophyly of asterids, Berberidopsidales as sister to asterids, monophyly of all orders except Icacinales, Aquifoliales, and Bruniales, and monophyly of all families except Icacinaceae and Ehretiaceae. Novel taxon placements benefited from the expanded sampling with living collections from botanical gardens, resolving hitherto uncertain relationships. The remaining ambiguous placements here are likely due to limited sampling and could be addressed in the future with relevant additional taxa. Using our well-resolved phylogeny as reference, divergence time estimates support an Aptian (Early Cretaceous) origin of asterids and the origin of all orders before the Cretaceous-Paleogene boundary. Ancestral state reconstruction at the family level suggests that the asterid ancestor was a woody terrestrial plant with simple leaves, bisexual, and actinomorphic flowers with free petals and free anthers, a superior ovary with a style, and drupaceous fruits. Whole-genome duplication (WGD) analyses provide strong evidence for 33 WGDs in asterids and one in Berberidopsidales, including four suprafamilial and seven familial/subfamilial WGDs. Our results advance the understanding of asterid phylogeny and provide numerous novel evolutionary insights into their diversification and morphological evolution.


Assuntos
Duplicação Cromossômica , Magnoliopsida/genética , Filogenia , Poliploidia , Flores/anatomia & histologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/metabolismo , Transcriptoma
6.
Mol Biol Evol ; 34(2): 262-281, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856652

RESUMO

Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution.


Assuntos
Duplicação Gênica , Rosaceae/genética , Evolução Biológica , Bases de Dados de Compostos Químicos , Evolução Molecular , Frutas/genética , Genoma de Planta , Genômica , Malus/genética , Filogenia , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA