Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 229: 115979, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119847

RESUMO

In this study, an adaptable HRP/GOX-Glu system was established due to the trait, efficient degradation of pollutants in the catalytic process of HRP named the ping-pong bibi mechanism and a sustained release of H2O2 in-situ under the catalysis of glucose oxidase (GOX). Compared with the traditional HRP/H2O2 system, the HRP was more stable in the HRP/GOX-Glu system based on the feature of persistent releasing H2O2 in-situ. Simultaneously, the high valent iron was found out to give a greater contribution to Alizarin Green (AG) removal through ping-pong mechanism, whereas the hydroxyl radical and superoxide free radical generated by Bio-Fenton were also the main active substances for AG degradation. Furthermore, on the basis of effect evaluation of the co-existence of two different degradation mechanisms in the HRP/GOX-Glu system, the degradation pathways of AG were proposed. Moreover, the optimum reaction conditions preferentially triggering ping-pong bibi mechanism instead of Bio-Fenton were determined by single factor analysis and degradation mechanism elaboration. This study would provide a reference for how to give full play to the advantages of ping-pong bibi mechanism in the dual-enzyme system based on HRP to degrade pollutants with high efficiency.


Assuntos
Poluentes Ambientais , Glucose Oxidase , Peroxidase do Rábano Silvestre/metabolismo , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio , Catálise , Superóxidos
2.
Bioresour Technol ; 360: 127548, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779746

RESUMO

To evaluate the ecological risk of aniline wastewater biodegradation, the aniline wastewater (200 mg/L) was treated in this work under the stress of Cu (II) at 3, 6 and 10 mg/L, respectively. The slight fluctuation of aniline-degrading performance and the significant inhibition of nitrogen removal was caused by the Cu (II) stress at below 6 mg/L. Meanwhile, the tolerance of nitrifying performance to Cu (II) was higher than denitrifying. The collapse of biosystem was caused by the Cu (II) stress at 10 mg/L and the decontamination function was disabled within 8 days. The activity and stability of sludge declined under the increase of Cu (II) content. Microbial diversity results demonstrated that the genera with heavy-metal tolerance represented by Zoogloea and Azospira significantly dominated under the continuously Cu (II) stress. Whereas, the biosystem with these dominant genera did not achieve the comparable aniline and nitrogen removal performance as the control group.


Assuntos
Microbiota , Esgotos , Compostos de Anilina , Reatores Biológicos , Depressão , Nitrificação , Nitrogênio/análise , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA