Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331042

RESUMO

This paper investigates the secrecy performance of a cognitive millimeter wave (mmWave) wiretap sensor network, where the secondary transmitter (SU-Tx) intends to communicate with a secondary sensor node under the interference temperature constraint of the primary sensor node. We consider that the random-location eavesdroppers may reside in the signal beam of the secondary network, so that confidential information can still be intercepted. Also, the interference to the primary network is one of the critical issues when the signal beam of the secondary network is aligned with the primary sensor node. Key features of mmWave networks, such as large number of antennas, variable propagation law and sensitivity to blockages, are taken into consideration. Moreover, an eavesdropper-exclusion sector guard zone around SU-Tx is introduced to improve the secrecy performance of the secondary network. By using stochastic geometry, closed-form expression for secrecy throughput (ST) achieved by the secondary sensor node is obtained to investigate secrecy performance. We also carry out the asymptotic analysis to facilitate the performance evaluation in the high transmit power region. Numerical results demonstrate that the interference temperature constraint of the primary sensor node enables us to balance secrecy performance of the secondary network, and provides interesting insights into how the system performance of the secondary network that is influenced by various system parameters: eavesdropper density, antenna gain and sector guard zone radius. Furthermore, blockages are beneficial to improve ST of the secondary sensor node under certain conditions.

2.
Entropy (Basel) ; 21(4)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33267141

RESUMO

Millimeter-wave (mmWave) communication is one of the key enabling technologies for fifth generation (5G) mobile networks. In this paper, we study the problem of secure communication in a mmWave wiretap network, where directional beamforming and link blockages are taken into account. For the secure transmission in the presence of spatially random eavesdroppers, an adaptive transmission scheme is adopted, for which sector secrecy guard zone and artificial noise (AN) are employed to enhance secrecy performance. When there exists no eavesdroppers within the sector secrecy guard zone, the transmitter only transmits information-bearing signal, and, conversely, AN along with information-bearing signal are transmitted. The closed-form expressions for secrecy outage probability (SOP), connection outage probability (COP) and secrecy throughput are derived under stochastic geometry. Then, we evaluate the effect of the sector secrecy guard zone and AN on the secrecy performance. Our results reveal that the application of the sector secrecy guard zone and AN can significantly improve the security of the system, and blockages also can be utilized to improve secrecy performance. An easy choice of transmit power and power allocation factor is provided for achieving higher secrecy throughput. Furthermore, increasing the density of eavesdroppers not always deteriorates the secrecy performance due to the use of the sector secrecy guard zone and AN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA