Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39203177

RESUMO

The microstructure and mechanical properties of as-cast Al-10Ce-3Mg-xZn (x = 0, 1, 3, 5 wt.%) alloys were systematically investigated, with a focus on the effect of Zn on the Al11Ce3 reinforcing phase in the alloy. The results showed that the Al-10Ce-3Mg alloy consists of α-Al, a Chinese-script Al11Ce3 eutectic phase, and a massive Al11Ce3 primary phase. With the addition of Zn content, most of the Zn atoms are enriched in the Al11Ce3 phase to form the acicular-like Al2CeZn2 phase within the Al11Ce3 phase. Increasing the Zn content can increase the volume fraction of the Al11Ce3 phase. Compared to the alloy without Zn addition, the microhardness and elastic modulus of the Al2CeZn2-reinforced Al11Ce3 phase in the alloy with 5 wt.% Zn increased by 18.9% and 9.0%, respectively. Moreover, the room-temperature mechanical properties of Al-10Ce-3Mg alloys were significantly improved due to the addition of Zn element. The alloy containing 5 wt.% Zn had the best tensile properties with an ultimate tensile strength of 210 MPa and a yield strength of 171MPa, which were 21% and 77% higher than those of the alloy without Zn, respectively. The alloy containing 5 wt.% Zn demonstrated a superior retention ratio of tensile strength at 200-300 °C, indicating that the alloy has excellent heat resistance. The improvement in the mechanical properties is primarily attributed to second-phase strengthening and solid solution strengthening.

2.
Materials (Basel) ; 17(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541564

RESUMO

The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.

3.
Materials (Basel) ; 16(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068076

RESUMO

In this study, the effects of the combined addition of CeLa and GdY on the microstructure and mechanical properties of as-cast Al-4Cu-1Mn alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile testing. The results show that the minor addition of CeLa and GdY leads to a refinement of grain size. The addition of CeLa results in the formation of supersaturated vacancies in the Al matrix, whereas the addition of GdY leads to a decrease in the precipitation temperature of the Al2Cu phase. The combined CeLa and GdY additions can significantly increase ultimate tensile strength (UTS) while losing only a small amount of elongation (EL). Compared with the unmodified alloy, the grain size and SDAS of the alloy (0.2 wt.% CeLa + 0.1 wt.% GdY) were diminished by 67.2% and 58.7%, respectively, while maximum hardness and UTS rose by 31.2% and 36.9%, respectively.

4.
Materials (Basel) ; 16(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763585

RESUMO

The Al-Mg-Li alloy is ideal for ultra-lightweight aircraft components, and its further performance improvement is of great interest in the aerospace industry. In this study, the effects of various beryllium (Be) additions (Be-free, 0.1, 0.25, 0.50 wt.%) on the microstructure, mechanical, and corrosion performance of the Al-Mg-Li alloys were systematically investigated. The optimal tensile property was obtained in the alloy which added 0.1 wt.% Be with an ultimate tensile strength (UTS), yield strength (YS), and elongation (El) of 530 MPa, 370 MPa, and 9.2%, respectively. Trace Be addition promotes the grain refinement of the as-cast alloy ingot and contributes positive effects to the recrystallization, bringing improvement of the tensile property. Meanwhile, the best anti-corrosion behavior is also presented at 0.1 wt.% Be is added, due to its potential to reduce the width of precipitates free zone (PFZ). As the Be content increases to an excessive level, the comprehensive performance decreases. Therefore, it is strongly recommended that adding trace Be elements into Al-Mg-Li alloys has a positive effect on the comprehensive service performance.

5.
Materials (Basel) ; 15(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363108

RESUMO

In this study, the effects of hot-rolled processes at different temperatures (420 °C, 450 °C, and 480 °C) and subsequent solid solution and aging treatments on the microstructure, mechanical properties, and corrosion properties of Al-Mg-Li alloys with trace Sc and Zr addition were investigated. The aging treatment of rolled sheets after solid solution treatment could obtain Al3Li particles and Al3(Sc, Zr)/Al3Li core-shell particles to improve the mechanical properties of Al-Mg-Li alloy products effectively. The results showed that, as the rolling temperatures increased from 420 °C to 480 °C, the alloy's ultimate tensile strengths and yield strengths increased, while the corrosion resistance decreased. The increase in rolling temperature increased the precipitation-free zone (PFZ) width of the alloy, which undermined the corrosion resistance of the alloy. Moreover, elevating the hot rolling temperature changes the texture strength of the alloy. Particularly in the 480 °C hot-rolled sample, the decrease in the Brass texture strength and the increase in the S texture and Copper texture strength led to an increase in the Taylor factor (M). The increase in rolling temperature also raised the number density of the Al3(Sc, Zr)/Al3Li core-shell particles. The presence of such particles not only inhibits grain growth but also changes the strength mechanism from dislocation cutting to Orowan bypassing. Due to the combination effect of grain morphology, texture evolution, and precipitation behavior, the 480 °C hot-rolled sample had the highest properties.

6.
Materials (Basel) ; 15(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057161

RESUMO

Combined with microstructure characterization and properties tests, the effects of Zn contents on the mechanical properties, corrosion behaviors, and microstructural evolution of extruded Al-Li-Cu-Mg-Ag alloys were investigated. The results show that the increase in Zn contents can accelerate hardening kinetics and improve the hardness of peak-aged alloys. The Zn-added alloys present non-recrystallization characteristics combined with partially small recrystallized grains along the grain boundaries, while the T1 phase with finer dimension and higher number density could explain the constantly increasing tensile strength. In addition, increasing Zn contents led to a lower corrosion current density and a shallower maximum intergranular corrosion depth, thus improving the corrosion resistance of the alloys. Zn addition, distributed in the central layer of T1 phases, not only facilitates the precipitation of more T1 phases but also reduces the corrosion potential difference between the T1 phase and the matrix. Therefore, adding 0.57 wt.% Zn to the alloy has an excellent combination of tensile strength and corrosion resistance. The properties induced by Zn under the T8 temper (solid solution treatment + water quenching + 5% pre-strain+ isothermal aging), however, are not as apparent as the T6 temper (solid solution treatment + water quenching + isothermal aging).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA