Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1304864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327496

RESUMO

Diagnosis and treatment of patients with cardiovascular and neurologic diseases primarily focus on the heart and brain, respectively. An increasing number of preclinical and clinical studies have confirmed a causal relationship between heart and brain diseases. Cardiogenic dementia is a cognitive impairment caused by heart dysfunction and has received increasing research attention. The prevention and treatment of cardiogenic dementia are essential to improve the quality of life, particularly in the elderly and aging population. This study describes the changes in cognitive function associated with coronary artery disease, myocardial infarction, heart failure, atrial fibrillation and heart valve disease. An updated understanding of the two known pathogenic mechanisms of cardiogenic dementia is presented and discussed. One is a cascade of events caused by cerebral hypoperfusion due to long-term reduction of cardiac output after heart disease, and the other is cognitive impairment regardless of the changes in cerebral blood flow after cardiac injury. Furthermore, potential medications for the prevention and treatment of cardiogenic dementia are reviewed, with particular attention to multicomponent herbal medicines.

2.
Biomed Pharmacother ; 162: 114642, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027988

RESUMO

BACKGROUND: Heart failure (HF) is a cardiovascular disease with high morbidity and mortality. Guanxinning injection (GXNI) is clinically used for the treatment of coronary heart disease, but its therapeutic efficacy and potential mechanism for HF are poorly understood. This study aimed to evaluate the therapeutic potential of GXNI on HF, with a special focus on its role in myocardial remodeling. METHODS: 3D cardiac organoids and transverse aortic constriction (TAC) mouse models were established and utilized. Heart function and pathology were evaluated by echocardiography, hemodynamic examination, tail-cuff blood pressure and histopathology. Key targets and pathways regulated by GXNI in HF mouse heart were revealed via RNA-seq and network pharmacology analysis, and were verified by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS: GXNI significantly inhibited cardiac hypertrophy and cells death. It protected mitochondrial function in cardiac hypertrophic organoids and markedly improved cardiac function in HF mice. Analysis of GXNI-regulated genes in HF mouse hearts revealed that IL-17A signaling in fibroblasts and the corresponding p38/c-Fos/Mmp1 pathway prominently mediated cardiac. Altered expressions of c-Fos, p38 and Mmp1 by GXNI in heart tissues and in cardiac organoids were validated by RT-PCR, WB, IHC, and IF. H&E and Masson staining confirmed that GXNI substantially ameliorated myocardial hypertrophy and fibrosis in HF mice and in 3D organoids. CONCLUSION: GXNI inhibited cardiac fibrosis and hypertrophy mainly via down-regulating p38/c-Fos/Mmp1 pathway, thereby ameliorating cardiac remodeling in HF mice. Findings in this study provide a new strategy for the clinical application of GXNI in the treatment of heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Camundongos , Animais , Metaloproteinase 1 da Matriz , Cardiomegalia , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL
3.
Ultramicroscopy ; 249: 113734, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058984

RESUMO

The calibration of the non-orthogonal error in nanoscale measurements is of paramount importance for analytical measuring instruments. Particularly, the calibration of non-orthogonal errors in atomic force microscopy (AFM) is essential for the traceable measurements of novel materials and two-dimensional (2D) crystals. The 2D self-traceable grating with a theoretical non-orthogonal angle of less than 0.0027° and an expanded uncertainty of 0.003° (k = 2) are measured by the Metrological Large Range Scanning Probe Microscope (Met. LR-SPM). In this study, we characterized the local and overall non-orthogonal error in AFM scans and proposed a protocol to tune the optimal scanning parameters of AFM minimizing the non-orthogonal error. We presented the method for accurately calibrating a commercial AFM system for non-orthogonal by establishing a detailed uncertainty budget and errors analysis. Our results verified the important advantages of the 2D self-traceable grating in calibrating precision instruments.

4.
Biomed Pharmacother ; 160: 114323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738500

RESUMO

BACKGROUND: QiShen YiQi (QSYQ) dropping pill, a component-based Chinese medicine consisting of benefiting Qi (YQ) and activating blood (HX) components, has been reported to exert a beneficial effect on cerebral ischemia-induced stroke. However, its efficacy and pharmacological mechanism on acute thromboembolic stroke is not clear. PURPOSE: This study is to explore the preventative effect and pharmacological mechanism of QSYQ and its YQ/HX components on the formation of platelet-leukocyte aggregation (PLA) in acute thromboembolic stroke. STUDY DESIGN AND METHODS: In vivo thromboembolic stroke model and FeCl3-induced carotid arterial occlusion models were used. Immunohistochemistry, Western blot, RT-qPCR, and flow cytometry experiments were performed to reveal the pharmacological mechanisms of QSYQ and its YQ/HX components. RESULTS: In thromboembolic stroke rats, QSYQ significantly attenuated infarct area, improved neurological recovery, reduced PLA formation, and inhibited P-selection (CD62P)/ P-selectin glycoprotein ligand-1 (PSGL-1) expressions. The YQ component preferentially down-regulated PSGL-1 expression in leukocyte, while the HX component preferentially down-regulated CD62P expression in platelet. In carotid arterial thrombosis mice, QSYQ and its YQ/HX components inhibited thrombus formation, prolonged vessel occlusion time, reduced circulating leukocytes and P-selectin expression. PLA formation and platelet/leukocyte adhesion to endothelial cell were also inhibited by QSYQ and its YQ/HX components in vitro. CONCLUSION: QSYQ and YQ/HX components attenuated thromboembolic stroke and carotid thrombosis by decreasing PLA formation via inhibiting CD62P/PSGL-1 expressions. This study shed a new light on the prevention of thromboembolic stroke.


Assuntos
Trombose das Artérias Carótidas , Acidente Vascular Cerebral , Trombose , Ratos , Animais , Camundongos , Trombose das Artérias Carótidas/tratamento farmacológico , Trombose das Artérias Carótidas/metabolismo , Selectina-P/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Leucócitos/metabolismo , Trombose/tratamento farmacológico , Trombose/metabolismo , Poliésteres
5.
Front Immunol ; 13: 1007341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325326

RESUMO

Guanxinning Injection (GXNI) is used clinically to treat cardiac injury, but its active components and mode of action remains unclear. Therefore, a myocardial ischemia/reperfusion injury (MIRI) model-based integrated strategy including function evaluation, RNA-seq analysis, molecular docking, and cellular thermal shift assay (CETSA) was employed to elucidate the effect and mechanism of GXNI and its main ingredient on cardiac injury. These results revealed that GXNI significantly improved cardiac dysfunction and myocardial injury in I/R mice. RNA-seq analysis clarified that CXCR1-mediated interleukin-8 pathway played a critical role in MIRI. Molecular docking screening identified danshensu (DSS) as the major active components of GXNI targeting CXCR1 protein, which was confirmed in an oxygen-glucose deprivation/reoxygenation-induced cardiomyocytes damage model showing that GXNI and DSS reduced the protein expression of CXCR1 and its downstream NF-κB, COX-2, ICAM-1 and VCAM-1. CETSA and isothermal dose-response fingerprint curves confirmed that DSS combined with CXCR1 in a dose-dependent manner. Furthermore, GXNI and DSS significantly decreased the expression levels of IL-6, IL-1ß and TNF-α and the number of neutrophils in post I/R myocardial tissue. In conclusion, this study revealed that GXNI and its active components DSS exert inhibitory effects on inflammatory factor release and leukocyte infiltration to improve I/R-induced myocardial injury by down-regulating CXCR1-NF-κB-COX-2/ICAM-1/VCAM-1 pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular , Receptores de Interleucina-8A/metabolismo
6.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297399

RESUMO

Stroke often results in neurological and neuropsychiatric sequela. Exosomes derived from brain endothelial cells (EC-Exo) protect neurons from hypoxic injury. However, the biological role of exosomes in apoptosis and synaptic plasticity remains unclear. This research aimed to assess whether cerebral microvascular endothelial cells inhibit apoptosis and promote synaptic remodeling through exosome-mediated cell-cell interaction after the ischemic attack. The effects of EC-Exo on primary neuronal apoptosis and synapses in oxyglucose deprivation reoxygenation (OGD/R) injury were first assessed in vitro. Animal experiments were performed using C57BL/6J mice, divided into three groups: a sham group, a model (middle cerebral artery occlusion/reperfusion, MCAO/R) group, and an EC-Exo group (tail vein injection of EC-Exo, once/2 days for 14 days) to evaluate the neuromotor and exploratory abilities of mice after MCAO/R. Apoptosis and synaptic protein expression levels were detected. The results demonstrated that EC-Exo inhibited neuronal apoptosis and increased synaptic length after OGD/R. In vivo, EC-Exo not only improved neural motor behavior and increased regional cerebral blood flow (rCBF) in MCAO/R-injured mice but also promoted the expression of synaptic regulatory proteins and inhibited apoptosis in the brain. These results suggest that EC-Exo may provide neuroprotection against stroke by promoting synaptic remodeling and inhibiting apoptosis from protecting neurons.

7.
Biomed Pharmacother ; 153: 113453, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076567

RESUMO

Atrial fibrillation significantly increases the risk of thromboembolism and stroke. Wenxin Keli (WXKL) is a widely used Chinese patent medicine against arrhythmia but if it has antithrombotic activity is unknown. Since platelet activation is a critical factor in thrombosis and the key target for many antithrombotic drugs, this study aims to demonstrate the antithrombotic efficacy of WXKL. In vitro platelet activation experiments showed that WXKL significantly inhibited platelet adhesion and aggregation. The potential active monomers in WXKL were screened by in silico prediction and in vitro platelet aggregation/adhesion assays. From WXKL chemical fractions and more than 40 monomers, linoleic acid (LA) was identified as the strongest antiplatelet compound. Oral administration of WXKL (1.2 g/kg/day) and LA (50 mg/kg/day) for 7 days significantly improved FeCl3-induced carotid thrombus formation in ICR mice without prolonging bleeding time. Flow cytometry showed that both WXKL and LA inhibited the release of p-selectin after platelet activation. ELISA showed that WXKL and LA also inhibited the expression of 6-Keto-PGF1α in plasma of mice with thrombus, but had no obvious effect on the expression of TXB2. WXKL inhibited platelet activation by broadly inhibiting the phosphorylation of protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and phospholipase C (PLC) ß3. In contrast, LA only inhibited the phosphorylation of PLCß3. In conclusion, WXKL and its active component LA showed good antiplatelet and antithrombotic efficacy in vivo and in vitro. Mechanistically, the multicomponent Chinese medicine WXKL acts on multiple targets in the platelet activation pathway whereas its active monomer linoleic acid acts specifically on phospholipase C ß3.


Assuntos
Fibrilação Atrial , Ácido Linoleico , Ativação Plaquetária , Trombose , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrinolíticos/farmacologia , Ácido Linoleico/farmacologia , Ácido Linoleico/uso terapêutico , Camundongos , Camundongos Endogâmicos ICR , Selectina-P/efeitos dos fármacos , Selectina-P/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico
8.
Small ; 18(27): e2201585, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35644863

RESUMO

To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO32- ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.


Assuntos
Lisossomos , Telúrio , Autofagia , Estresse do Retículo Endoplasmático , Humanos , Lisossomos/metabolismo , Fosforilação
9.
Biomed Pharmacother ; 153: 113325, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772377

RESUMO

BACKGROUND: Promotion of functional recovery in patients is the primary goal of stroke management. However, its achievement is low due to the lack of full understanding of the complex pathological process of stroke and therefore limited therapeutic strategies. Qishen Yiqi Dropping Pill (QSYQ) is a component-based Chinese medicine that has been widely used in clinical treatment of ischemic cardiovascular diseases. Our previous studies indicated that QSYQ were protective for acute ischemic stroke in animal models and this study aimed to investigate the effect of QSYQ on brain function during stroke recovery. METHODS: The therapeutic effects of QSYQ were evaluated by neurological deficit score, dark avoidance test, gait analysis, Morris water maze and brain tissue atrophy volume in a rat model of middle cerebral artery occlusion (MCAO) with ischemia for 60 min. The underlying mechanisms of QSYQ accelerating the functional recovery of MCAO rats was then revealed using proteomic sequencing and validated by immunohistochemistry, qRT-PCR and ELISA assays. The active components in QSYQ were elucidated by molecular docking and verified biochemically in vitro. RESULTS: QSYQ treatment for 28 days significantly improved the neurological function, gait, spontaneous activity, spatial memory, and reduced brain atrophy in MCAO rats. Proteomic analysis of ischemic brain region and the following bioinformatics studies showed that QSYQ intervention markedly modulated neuroinflammatory responses post stroke, in which ICAM-1 played a dominant role. In particular, QSYQ reversed high cerebral expression of ICAM-1 in MCAO rats and decreased the content of TNF-α, IL-6 and IL1ß in brain tissue and serum. In vitro, it was found that the active component rosmarinic acid in QSYQ evidently inhibit the expression of ICAM-1 caused by oxygen glucose deprivation/reoxygenation injury via using immunofluorescence staining. CONCLUSION: QSYQ effectively accelerates the recovery of motor impairment and memory loss in rats after stroke via downregulation of ICAM-1-mediated neuroinflammation, and rosmarinic acid is one of its main active components.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Atrofia , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Molécula 1 de Adesão Intercelular , Transtornos da Memória/tratamento farmacológico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Proteômica , Ratos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
10.
Acta Pharm Sin B ; 11(11): 3337-3363, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34567957

RESUMO

COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe, posing an enormous threat to public health and safety. Traditional Chinese medicine (TCM), in combination with Western medicine (WM), has made important and lasting contributions in the battle against COVID-19. In this review, updated clinical effects and potential mechanisms of TCM, presented in newly recognized three distinct phases of the disease, are summarized and discussed. By integrating the available clinical and preclinical evidence, the efficacies and underlying mechanisms of TCM on COVID-19, including the highly recommended three Chinese patent medicines and three Chinese medicine formulas, are described in a panorama. We hope that this comprehensive review not only provides a reference for health care professionals and the public to recognize the significant contributions of TCM for COVID-19, but also serves as an evidence-based in-depth summary and analysis to facilitate understanding the true scientific value of TCM.

11.
J Ethnopharmacol ; 280: 114481, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343651

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shuxuening injection (SXNI) is a Chinese medicine of Ginkgo biloba L. leaves extract (GBE), which is widely used clinically for cardiovascular diseases such as stroke and myocardial infarction, but the pharmacological mechanism of its therapeutic effect is not fully understood. AIM OF THE STUDY: Preclinical studies suggested that inhibition of neuronal apoptosis effectively improves brain damage after ischemic stroke. The purpose of this study was to investigate the inhibitory effect of SXNI on neuronal apoptosis in post-stroke mice and its underlying mechanism. MATERIALS AND METHODS: A mouse cerebral ischemia-reperfusion injury (CIRI) model was constructed by middle cerebral artery occlusion (MCAO) and treated with 3 mL/kg SXNI. TUNEL and immunohistochemistry experiments were performed on brain slices on the 7th day after stroke. The protein was extracted from the hippocampus region of the brain for western-blot assay. To simulate the in vivo ischemia-reperfusion process, the hippocampal neuron cell line HT-22 was subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro, and 200 µg/mL SXNI was administered. The HT-22 cells were then studied by RT-PCR and immunocytochemistry. RESULTS: In vivo, SXNI treatment significantly reduced hippocampal neuronal apoptosis. Immunohistochemistry showed that SXNI inhibited the activation of Caspase-3 protein in the hippocampus after ischemic stroke. Western blot analysis further confirmed that SXNI regulated the expression of the antagonizing protein pair Bax and Bcl-2 to exert anti-apoptotic effect in addition to reducing the expression of Cleaved-Caspase-3 in the hippocampus. In vitro, 200 µg/mL SXNI treatment significantly improved HT-22 apoptosis caused by OGD/R. Further RT-PCR and immunocytochemistry study showed that 200 µg/mL SXNI inhibited apoptosis of hippocampal neurons by regulating the mRNA and protein expressions of apoptotic molecules Bax, Bcl-2 and Caspase-3. CONCLUSIONS: CIRI can induce hippocampal neuronal apoptosis, which is inhibited by SXNI via regulating Bax/Bcl-2 and blocking Caspase-3 activation. Therefore, SXNI may be a promising treatment strategy to improve the prognosis of ischemic stroke.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Caspase 3/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Proteína X Associada a bcl-2/metabolismo
12.
Biomed Pharmacother ; 141: 111941, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328102

RESUMO

BACKGROUND: Hypertension is a leading risk factor for developing kidney disease. Current single-target antihypertensive drugs are not effective for hypertensive nephropathy, in part due to its less understood mechanism of pathogenesis. We recently showed that QiShenYiQi (QSYQ), a component-based cardiovascular Chinese medicine, is also effective for ischemic stroke. Given the important role of the brain-heart-kidney axis in blood pressure control, we hypothesized that QSYQ may contribute to blood pressure regulation and kidney protection in Dahl salt-sensitive hypertensive rats. METHODS: The therapeutic effects of QSYQ on blood pressure and kidney injury in Dahl salt-sensitive rats fed with high salt for 9 weeks were evaluated by tail-cuff blood pressure monitoring, renal histopathological examination and biochemical indicators in urine and serum. RNA-seq was conducted to identify QSYQ regulated genes in hypertensive kidney, and RT-qPCR, immunohistochemistry, and Western blotting analysis were performed to verify the transcriptomics results and validate the purposed mechanisms. RESULTS: QSYQ treatment significantly decreased blood pressure in Dahl salt-sensitive hypertensive rats, alleviated renal tissue damage, reduced renal interstitial fibrosis and collagen deposition, and improved renal physiological function. RNA-seq and subsequent bioinformatic analysis showed that the expression of ADRA1D and SIK1 genes were among the most prominently altered by QSYQ in salt-sensitive hypertensive rat kidney. RT-qPCR, immunohistochemistry and Western blotting results confirmed that the mRNA and protein expression levels of alpha-1D adrenergic receptor (ADRA1D) in the kidney tissue of the QSYQ-treated rats were markedly down-regulated, while the mRNA and protein levels of salt inducible kinase 1 (SIK1) were significantly increased. CONCLUSION: QSYQ not only lowered blood pressure, but also alleviated renal damage via reducing the expression of ADRA1D and increasing the expression of SIK1 in the kidney of Dahl salt-sensitive hypertensive rats.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/metabolismo , Nefrite/tratamento farmacológico , Nefrite/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Receptores Adrenérgicos alfa 1/biossíntese , Cloreto de Sódio na Dieta/toxicidade , Animais , Medicamentos de Ervas Chinesas/farmacologia , Expressão Gênica , Masculino , Ratos , Ratos Endogâmicos Dahl
13.
Biomed Pharmacother ; 141: 111828, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146848

RESUMO

A mild ischemic stroke may cause both debilitating locomotor and cognitive decline, for which the mechanism is not fully understood, and no therapies are currently available. In this study, a nonfatal stroke model was constructed in mice by a modified middle cerebral artery occlusion (MCAO) procedure, allowing an extended recovery period up to 28 days. The extended MCAO model successfully mimicked phenotypes of a recovery phase post-stroke, including locomotor motor and cognitive deficiencies, which were effectively improved after Shuxuening injection (SXNI) treatment. Tissue slices staining showed that SXNI repaired brain injury and reduced neuronal apoptosis, especially in the hippocampus CA3 region. Transcriptomics sequencing study revealed 565 differentially expressed genes (DEGs) in the ischemic brain after SXNI treatment. Integrated network pharmacological analysis identified Neurotrophin/Trk Signaling was the most relevant pathway, which involves 15 key genes. Related DEGs were further validated by RT-PCR. Western-blot analysis showed that SXNI reversed the abnormal expression of BDNF, TrkB, Mek3 and Jnk1after stroke. ELISA found that SXNI increased brain level of p-Erk and Creb. At sub-brain level, the expression of BDNF and TrkB was decreased and GFAP was increased on the hippocampal CA3 region in the post-stroke recovery phase and this abnormality was improved by SXNI. In vitro experiments also found that oxygen glucose deprivation reduced the expression of BDNF and TrkB, which was reversed by SXNI. In summary, we conclude that SXNI facilitates the recovery of cognitive and locomotor dysfunction by modulating Neurotrophin/Trk Signaling in a mouse model for the recovery phase of post-ischemic stroke.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hipocampo/metabolismo , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/etiologia , Fatores de Crescimento Neural/efeitos dos fármacos , Receptor trkA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Animais , Linhagem Celular , Medicamentos de Ervas Chinesas/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Psicomotor/efeitos dos fármacos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/psicologia , Transcriptoma
14.
J Ethnopharmacol ; 277: 114224, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044075

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As one of major components of Buyang Huanwu decoction, Astragali Radix is broadly used for stroke treatment. Astragalus saponins (AST), the main active compound from Astragali Radix has the potentials for neuroprotection and improving spatial memory without clear pharmacological mechanism. AIM OF THE STUDY: The aim of this study was to investigate that pretreatment of AST is beneficial to protect against focal ischemic stroke in mouse model and its related underlying mechanism. MATERIALS AND METHODS: The neurological and motor function of MCAO mice were assessed by TTC staining and CatWalk gait analysis. The effect of AST on proliferation of NSCs was showed by the expression of Ki67 of MCAO mice and the number and size of primary neurospheres cultured from adult SVZ. The intersection of stroke-related targets, neurogenesis targets and drug-related targets were identified by the online website (https://www.omicstudio.cn/index). Then GO functional annotation and KEGG pathway enrichment analysis were performed. Candidate target Akt was confirmed to increase proliferation of cultured NSCs from adult SVZ by CCK8 assay and Western blot. RESULTS: We found that with the prolongation of administration time, AST improved neurological and motor function of MCAO mice, by promoting the proliferation of NSCs both in vivo and in vitro. Then, the primary network among drug, genes and biological pathway was established by using compound-target-disease & function-pathway analysis of astragalus membranaceus. PI3K/Akt which plays a key role in cell proliferation was among the top 10 most significant GO terms from above three aspects. Further analysis using cultured NSCs from adult SVZ confirmed that AST, astragaloside I (A1) and astragaloside III (A3) increased the proliferation of NSCs through targeting Akt. CONCLUSION: The present study elucidated that Astragalus saponins pretreatment could provide a protective effect on experimental stroke mainly by enhancing proliferation of NSCs through targeting Akt. The findings provided a basis for the development of novel strategies for the treatment of stroke.


Assuntos
Medicamentos de Ervas Chinesas/química , Fármacos Neuroprotetores/farmacologia , Saponinas/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Astragalus propinquus , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/isolamento & purificação
15.
Front Pharmacol ; 12: 588587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953667

RESUMO

Effective therapies for stroke are still limited due to its complex pathological manifestations. QiShenYiQi (QSYQ), a component-based Chinese medicine capable of reducing organ injury caused by ischemia/reperfusion, may offer an alternative option for stroke treatment and post-stroke recovery. Recently, we reported a beneficial effect of QSYQ for acute stroke via modulation of the neuroinflammatory response. However, if QSYQ plays a role in subacute stroke remains unknown. The pharmacological action of QSYQ was investigated in experimental stroke rats which underwent 90 min ischemia and 8 days reperfusion in this study. Neurological and locomotive deficits, cerebral infarction, brain edema, and BBB integrity were assessed. TMT-based quantitative proteomics were performed to identify differentially expressed proteins following QSYQ treatment. Immunohistochemistry, western blot analysis, RT-qPCR, and ELISA were used to validate the proteomics data and to reveal the action mechanisms. Therapeutically, treatment with QSYQ (600 mg/kg) for 7 days significantly improved neurological recovery, attenuated infarct volume and brain edema, and alleviated BBB breakdown in the stroke rats. Bioinformatics analysis indicated that protein galectin-3 and its mediated inflammatory response was closely related to the beneficial effect of QSYQ. Specially, QSYQ (600 mg/kg) markedly downregulated the mRNA and protein expression levels of galectin-3, TNF-α, and IL-6 in CI/RI brain as well as serum levels of TNF-α and IL-6. Overall, our findings showed that the effective action of QSYQ against the subacute phase of CI/RI occurs partly via regulating galectin-3 mediated inflammatory reaction.

16.
Zhongguo Zhong Yao Za Zhi ; 46(1): 6-14, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645045

RESUMO

Hypertension is a clinical syndrome characterized by elevated systemic arterial blood pressure, which may be accompanied by functional or organic damage of heart, brain, kidney and other organs. The pathogenesis and development of hypertension are affected by genetic, environmental, epigenetic, intestinal microbiota and other factors. They are the result of multiple factors that promote the change of blood pressure level and vascular resistance. G protein coupled receptors(GPCRs) are the largest and most diverse superfamily of transmembrane receptors that transmit signals across cell membranes and mediate a large number of cellular responses required by human physiology. A variety of GPCRs are involved in the control of blood pressure and the maintenance of normal function of cardiovascular system. Hypertension contributes to the damages of heart, brain, kidney, intestine and other organs. Many GPCRs are expressed in various organs to regulate blood pressure. Although many GPCRs have been used as therapeutic targets for hypertension, their efficacy has not been fully studied. The purpose of this paper is to elucidate the role of GPCRs in blood pressure regulation and its distribution in target organs. The relationship between GPCRs related to intestinal microorganisms and blood pressure is emphasized. It is proposed that traditional Chinese medicine may be a new way to treat hypertension by regulating the related GPCRs via intestinal microbial metabolites.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Pressão Sanguínea , Proteínas de Ligação ao GTP , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
17.
Pharmacol Res ; 165: 105460, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513357

RESUMO

Despite of its high morbidity and mortality, there is still a lack of effective treatment for ischemic stroke in part due to our incomplete understanding of molecular mechanisms of its pathogenesis. In this study, we demonstrate that SHH-PTCH1-GLI1-mediated axonal guidance signaling and its related neurogenesis, a central pathway for neuronal development, also plays a critical role in early stage of an acute stroke model. Specifically, in vivo, we evaluated the effect of GXNI on ischemic stroke mice via using the middle cerebral artery embolization model, and found that GXNI significantly alleviated cerebral ischemic reperfusion (I/R) injury by reducing the volume of cerebral infarction, neurological deficit score and cerebral edema, reversing the BBB permeability and histopathological changes. A combined approach of RNA-seq and network pharmacology analysis was used to reveal the underlying mechanisms of GXNI followed by RT-PCR, immunohistochemistry and western blotting validation. It was pointed out that axon guidance signaling pathway played the most prominent role in GXNI action with Shh, Ptch1, and Gli1 genes as the critical contributors in brain protection. In addition, GXNI markedly prevented primary cortical neuron cells from oxygen-glucose deprivation/reoxygenation damage in vitro, and promoted axon growth and synaptogenesis of damaged neurons, which further confirmed the results of in vivo experiments. Moreover, due to the inhibition of the SHH-PTCH1-GLI1 signaling pathway by cyclopropylamine, the effect of GXNI was significantly weakened. Hence, our study provides a novel option for the clinical treatment of acute ischemic stroke by GXNI via SHH-PTCH1-GLI1-mediated axonal guidance signaling, a neuronal development pathway previously considered for after-stroke recovery.


Assuntos
Orientação de Axônios/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Animais , Animais Recém-Nascidos , Orientação de Axônios/fisiologia , Isquemia Encefálica/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
18.
Biomed Pharmacother ; 127: 110213, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417690

RESUMO

Post-stroke neural damage is a serious health concern which does not yet have an effective treatment. We have shown previously that Shuxuening injection (SXNI), a Ginkgo biloba extract-based natural medicine, protects brain after an acute ischemic stroke, but its efficacy for post-stroke recovery is not known. This study was to investigate whether SXNI can improve the prognosis of stroke at a subacute phase. Mice with cerebral ischemia-reperfusion injury (CIRI) were established by middle cerebral artery occlusion (MCAO), and drugs or saline were injected by the tail vein every 12 h after reperfusion. The therapeutic effect of SXNI was evaluated by survival rate, modified neurologic severity scores (mNSS), open-field test, locomotive gait patterns, cerebral infarction volume, brain edema and histopathological changes. Subsequently, a combined method of RNA-seq and Ingenuity® Pathway Analysis (IPA) was performed to identify key targets and pathways of SXNI facilitating the prognosis of stroke in mouse brain. The results of the transcriptome analysis were verified by real time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), western blot (WB) and immunohistochemistry (IHC). The experimental results showed that in the new subacute stroke model, SXNI markedly improves the survival rate, neurological and motor functions and histopathological changes, and significantly reduces cerebral infarction and edema volume. RNA-seq analysis of subacute stroke mice with or without SXNI (3 mL/kg) indicated 963 differentially expressed genes (DEGs) with a fold change ≥ 1.5 and a P-value ≤ 0.01. IPA analysis of DEGs showed that granulocyte adhesion and diapedesis ranked first in the pathway ranking, and the most critical gene regulated by SXNI was G-csf. Simultaneously, RT-PCR, ELISA, WB and IHC results demonstrated that SXNI not only obviously reduced the mRNA expression levels of key genes G-csf, Sele and Mac-1 in this pathway, but also significantly decreased the protein expression levels of G-CSF in serum and E-selectin and MAC-1 in brain tissues. In summary, our research suggested that SXNI can exert a remarkable neurofunctional therapeutic effect on stroke mice via down-regulating G-CSF to inhibit granulocyte adhesion and diapedesis. This study provides experimental evidence that SXNI may fulfill the need for stroke medicine targeting specifically at the recovery stage.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Fator Estimulador de Colônias de Granulócitos/genética , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Modelos Animais de Doenças , Regulação para Baixo , Granulócitos/metabolismo , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Acidente Vascular Cerebral/fisiopatologia , Migração Transendotelial e Transepitelial
19.
Biomed Pharmacother ; 125: 109945, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32028240

RESUMO

Cerebral ischemia/reperfusion injury (CI/RI) is a common feature of ischemic stroke, involving a period of impaired blood supply to the brain, followed by the restoration of cerebral perfusion through medical intervention. Although ischemia and reperfusion brain damage is a complex pathological process with an unclear physiological mechanism, more attention is currently focused on the neuroinflammatory response of an ischemia/reperfusion origin, and anti-inflammatory appears to be a potential therapeutic strategy following ischemic stroke. QiShenYiQi (QSYQ), a component-based Chinese medicine with Qi-tonifying and blood-activating property, has pharmacological actions of anti-inflammatory, antioxidant, mitochondrial protectant, anti-apoptosis, and antiplatelet aggregation. We have previously reported that the cardioprotective effect of QSYQ against ischemia/reperfusion injury is via improvement of mitochondrial functional integrity. In this research work, we aimed to investigate the possible mechanism involved in the neuroprotection of QSYQ in mice model of cerebral ischemia/reperfusion injury based on the inflammatory pathway. The cerebral protection was evaluated in the stroke mice after 24 h reperfusion by assessing the neurological deficit, cerebral infarction, brain edema, BBB functionality, and via histopathological assessment. TCM-based network pharmacology method was performed to establish and analyze compound-target-disease & function-pathway network so as to find the possible mechanism linking to the role of QSYQ in CI/RI. In addition, RT-qPCR was used to verify the accuracy of predicted signaling gene expression. As a result, improvement of neurological outcome, reduction of infarct volume and brain edema, a decrease in BBB disruption, and amelioration of histopathological alteration were observed in mice pretreated with QSYQ after experimental stroke surgery. Network pharmacology analysis revealed neuroinflammatory response was associated with the action of QSYQ in CI/RI. RT-qPCR data showed that the mice pretreated with QSYQ could significantly decrease IFNG-γ, IL-6, TNF-α, NF-κB p65, and TLR-4 mRNA levels and increase TGF-ß1 mRNA level in the brain compared to the untreated mice after CI/RI (p < 0.05). In conclusion, our study indicated the cerebral protective effect of pretreatment with QSYQ against CI/RI, which may be partly related to its potential to the reduction of neuroinflammatory response in a stroke subject.


Assuntos
Isquemia Encefálica/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Barreira Hematoencefálica/patologia , Edema Encefálico/patologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Fator de Crescimento Transformador beta1/genética
20.
Front Pharmacol ; 11: 614024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33986658

RESUMO

Sepsis-induced myocardial dysfunction is a major contributor to the poor outcomes of septic shock. As an add-on with conventional sepsis management for over 15 years, the effect of Xuebijing injection (XBJ) on the sepsis-induced myocardial dysfunction was not well understood. The material basis of Xuebijing injection (XBJ) in managing infections and infection-related complications remains to be defined. A murine cecal ligation and puncture (CLP) model and cardiomyocytes in vitro culture were adopted to study the influence of XBJ on infection-induced cardiac dysfunction. XBJ significantly improved the survival of septic-mice and rescued cardiac dysfunction in vivo. RNA-seq revealed XBJ attenuated the expression of proinflammatory cytokines and related signalings in the heart which was further confirmed on the mRNA and protein levels. Xuebijing also protected cardiomyocytes from LPS-induced mitochondrial calcium ion overload and reduced the LPS-induced ROS production in cardiomyocytes. The therapeutic effect of XBJ was mediated by the combination of paeoniflorin and hydroxysafflor yellow A (HSYA) (C0127-2). C0127-2 improved the survival of septic mice, protected their cardiac function and cardiomyocytes while balancing gene expression in cytokine-storm-related signalings, such as TNF-α and NF-κB. In summary, Paeoniflorin and HSYA are key active compounds in XBJ for managing sepsis, protecting cardiac function, and controlling inflammation in the cardiac tissue partially by limiting the production of IL-6, IL-1ß, and CXCL2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...