Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6833-6841, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725503

RESUMO

The understanding of electron transfer pathways and orbital interactions between analytes and adsorption sites in gas-sensitive studies, especially at the atomic level, is currently limited. Herein, we have designed eight isoreticular catechol-metalloporphyrin scaffolds, FeTCP-M and InTCP-M (TCP = 5,10,15,20-tetrakis-catechol-porphyrin, M = Fe, Co, Ni and Zn) with adjustable charge transfer schemes in the coordination microenvironment and precise tuning of orbital interactions between analytes and adsorption sites, which can be used as models for exploring the influence of these factors on gas sensing. Our experimental findings indicate that the sensitivity and selectivity can be modulated using the type of metals in the metal-catechol chains (which regulate the electron transfer routes) and the metalloporphyrin rings (which fine-tune the orbital interactions between analytes and adsorption sites). Among the isostructures, InTCP-Co demonstrates the highest response and selectivity to NO2 under visible light irradiation, which could be attributed to the more favorable transfer pathway of charge carriers in the coordination microenvironment under visible light illumination, as well as the better electron spin state compatibility, higher orbital overlap and orbital symmetry matching between the N-2s2pz hybrid orbital of NO2 and the Co-3dz2 orbital of InTCP-Co.

2.
Angew Chem Int Ed Engl ; 63(16): e202401679, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38389160

RESUMO

Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...