Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
mSphere ; : e0018224, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738873

RESUMO

The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE: Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.

2.
Bioresour Technol ; : 130787, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703955

RESUMO

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.

3.
ACS Appl Bio Mater ; 7(5): 3154-3163, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38695332

RESUMO

ß-Galactosidase (ß-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor ß-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine ß-Gala activity effectively. Via the sensing performance, the catalytic activity of ß-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-ß-d-galactopyranoside (KOßDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing ß-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of ß-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.


Assuntos
Neoplasias da Mama , Quempferóis , Teste de Materiais , Nanopartículas , Silício , beta-Galactosidase , Humanos , beta-Galactosidase/metabolismo , Silício/química , Células MCF-7 , Nanopartículas/química , Quempferóis/química , Quempferóis/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tamanho da Partícula , Colorimetria , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Feminino , Estrutura Molecular
4.
BMC Oral Health ; 24(1): 514, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698364

RESUMO

BACKGROUND: Studies have shown that visfatin is an inflammatory factor closely related to periodontitis. We examined the levels of visfatin in gingival crevicular fluid (GCF) and gingival tissues under different periodontal conditions, in order to provide more theoretical basis for exploring the role of visfatin in the pathogenesis of periodontitis. METHODS: We enrolled 87 subjects, with 43 in the chronic periodontitis (CP) group, 21 in the chronic gingivitis (CG) group, and 23 in the periodontal health (PH) group. Periodontal indexes (PD, AL, PLI, and BI) were recorded. GCF samples were collected for visfatin quantification, and gingival tissues were assessed via immunohistochemical staining. RESULTS: Visfatin levels in GCF decreased sequentially from CP to CG and PH groups, with statistically significant differences (P < 0.05). The CP group exhibited the highest visfatin levels, while the PH group had the lowest. Gingival tissues showed a similar trend, with significant differences between groups (P < 0.001). Periodontal indexes were positively correlated with visfatin levels in both GCF and gingival tissues (P < 0.001). A strong positive correlation was observed between visfatin levels in GCF and gingival tissues (rs = 0.772, P < 0.001). CONCLUSION: Greater periodontal destruction corresponded to higher visfatin levels in GCF and gingival tissues, indicating their potential collaboration in damaging periodontal tissues. Visfatin emerges as a promising biomarker for periodontitis and may play a role in its pathogenesis.


Assuntos
Periodontite Crônica , Gengiva , Líquido do Sulco Gengival , Gengivite , Nicotinamida Fosforribosiltransferase , Índice Periodontal , Humanos , Líquido do Sulco Gengival/química , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/análise , Masculino , Feminino , Estudos Transversais , Gengiva/metabolismo , Adulto , Periodontite Crônica/metabolismo , Gengivite/metabolismo , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/análise
5.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588212

RESUMO

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Radioimunoterapia , Glucose , Glucose Oxidase , Imunossupressores , Ácido Láctico , Neoplasias/terapia , Linhagem Celular Tumoral
6.
Front Immunol ; 15: 1379742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596670

RESUMO

Background: Kidney transplantation is considered the most effective treatment for end-stage renal failure. Recent studies have shown that the significance of the immune microenvironment after kidney transplantation in determining prognosis of patients. Therefore, this study aimed to conduct a bibliometric analysis to provide an overview of the knowledge structure and research trends regarding the immune microenvironment and survival in kidney transplantation. Methods: Our search included relevant publications from 2013 to 2023 retrieved from the Web of Science core repository and finally included 865 articles. To perform the bibliometric analysis, we utilized tools such as VOSviewer, CiteSpace, and the R package "bibliometrix". The analysis focused on various aspects, including country, author, year, topic, reference, and keyword clustering. Results: Based on the inclusion criteria, a total of 865 articles were found, with a trend of steady increase. China and the United States were the countries with the most publications. Nanjing Medical University was the most productive institution. High-frequency keywords were clustered into 6 areas, including kidney transplantation, transforming growth factor ß, macrophage, antibody-mediated rejection, necrosis factor alpha, and dysfunction. Antibody mediated rejection (2019-2023) was the main area of research in recent years. Conclusion: This groundbreaking bibliometric study comprehensively summarizes the research trends and advances related to the immune microenvironment and survival after kidney transplantation. It identifies recent frontiers of research and highlights promising directions for future studies, potentially offering fresh perspectives to scholars in the field.


Assuntos
Transplante de Rim , Humanos , Anticorpos , Bibliometria , China , Análise por Conglomerados
7.
J Asian Nat Prod Res ; : 1-17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572941

RESUMO

In recent years, with sinomenine hydrochloride as the main ingredient, Qingfengteng had been formulated as various dosage forms for clinical treatment. Subsequent findings confirmed a variety of biological roles for sinomenine. Here, 15 H2S-donating sinomenine derivatives were synthesized. Target hybrids a11 displayed substantial cytotoxic effects on cancer cell lines, particularly against K562 cells, with an IC50 value of 1.36 µM. In-depth studies demonstrated that a11 arrested cell cycle at G1 phase, induced apoptosis via both morphological changes in nucleus and membrane potential collapse in mitochondria. These results indicated a11 exerted an antiproliferative effect through apoptosis induction via mitochondrial pathway.

8.
Mol Neurobiol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664301

RESUMO

Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1ß and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.

9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653353

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and moderate exercise holds promise in ameliorating the ongoing neurodegeneration and cognitive decline. Here, we investigated whether exercise-enriched blood plasm could yield a beneficial therapeutic effect on AD pathologies and cognitive decline in transgenic AD (P301S) mice. In this investigation, a cohort of 2-month-old C57BL/6 mice were granted continuous access to either a running wheel or a fixed wheel for 6 weeks. After that, their plasmas were extracted and subsequently injected intravenously into 4.5-month-old P301S mice biweekly over a 6-week period. A comprehensive methodology was then employed, integrating behavioral tests, pathology assessments, and biochemical analyses to unveil the potential anti-dementia implications of exercise-enriched blood plasma in P301S mice. Upon systemic administration, the findings revealed a noteworthy attenuation of hippocampus-dependent behavioral impairments in P301S mice. Conversely, blood plasma from sedentary counterparts exhibited no discernible impact. These effects were intricately associated with the mitigation of neuroinflammation, the augmentation of hippocampal adult neurogenesis, and a reduction of synaptic impairments following the administration of exercise-enriched blood plasma. These findings advance the proposition that administering exercise-enriched blood plasma may serve as an effective prophylactic measure against AD, opening avenues for further exploration and potential therapeutic interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Modelos Animais de Doenças , Hipocampo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Condicionamento Físico Animal , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/sangue , Hipocampo/metabolismo , Hipocampo/patologia , Condicionamento Físico Animal/métodos , Disfunção Cognitiva/terapia , Disfunção Cognitiva/sangue , Camundongos , Plasma/metabolismo , Masculino , Neurogênese
10.
Syst Appl Microbiol ; 47(2-3): 126503, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490089

RESUMO

A taxonomic investigation was conducted on four bacterial strains isolated from soil contaminated with polycyclic aromatic hydrocarbons and heavy metals. Phylogenetic analysis revealed that these strains belonged to the family Chitinophagaceae. Examination of the 16S rRNA genes indicated that their sequence identities were below 97.6 % compared to any known and validly nominated bacterial species. The genomes of the four strains ranged from 4.12 to 8.76 Mb, with overall G + C molar contents varying from 41.28 % to 50.39 %. Predominant cellular fatty acids included iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The average nucleotide identity ranged from 66.90 % to 74.63 %, and digital DNA-DNA hybridization was 12.5-12.8 %. Based on the genomic and phenotypic features of the new strains, four novel species and two new genera were proposed within the family Chitinophagaceae. The ecological distributions were investigated by data-mining of NCBI databases, and results showed that additional strains or species of the newly proposed taxa were widely distributed in various environments, including polluted soil and waters. Functional analysis demonstrated that strains H1-2-19XT, JS81T, and JY13-12T exhibited resistance to arsenite (III) and chromate (VI). The proposed names for the four novel species are Paraflavitalea pollutisoli (type strain H1-2-19XT = JCM 36460T = CGMCC 1.61321T), Terrimonas pollutisoli (type strain H1YJ31T = JCM 36215T = CGMCC 1.61343T), Pollutibacter soli (type strain JS81T = JCM 36462T = CGMCC 1.61338T), and Polluticoccus soli (type strain JY13-12T = JCM 36463T = CGMCC 1.61341T).

11.
J Pharmacol Sci ; 154(4): 316-325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485350

RESUMO

Diabetic nephropathy is a common complication of diabetes, accumulating evidence underscores the pivotal role of tubulointerstitial fibrosis in the progression of diabetic nephropathy. However, the underlying mechanisms remain incompletely understood. Although the mechanisms in diabetic nephropathy fibrosis have been the focus of many studies, only limited information is currently available concerning microRNA regulation in tubulointerstitial fibrosis. In this study, we aimed to investigate the roles of miR-320a-3p and bone morphogenetic protein-6 (BMP6) in tubulointerstitial fibrosis. After inducing fibrosis with high glucose in HK-2 cells, we found that miR-320a-3p is significantly up-regulated, whereas BMP6 is markedly down-regulated. These changes suggest close link between miR-320a-3p and BMP6 in tubulointerstitial fibrosis. To elucidate this phenomenon, miR-320a-3p mimic, inhibitor and siBMP6 were employed. We observed in miR-320a-3p mimic group the fibrosis marker include alpha smooth muscle actin and type I collagen was significantly up-regulated, whereas BMP6 exhibited the opposite trend. Additionally, we found icariin could alleviate tubulointerstitial fibrosis by downregulation the miR-320a-3p expression. In conclusion, miR-320a-3p promotes tubulointerstitial fibrosis during the development of DN by suppressing BMP signal pathway activity via inhibiting BMP6 expression. Suggesting that miR-320a-3p represents a potential therapeutic target for tubulointerstitial fibrosis induced by diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Flavonoides , MicroRNAs , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose
12.
J Environ Sci (China) ; 142: 279-289, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527893

RESUMO

Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy (WtE) incineration processes. This study aims to investigate the influence of hematite surface oxygen point defects on the formation of environmentally persistent free radicals (EPFRs) from phenolic compounds based on the first-principles calculations. Two oxygen-deficient conditions were considered: oxygen vacancies at the top surface and on the subsurface. Our simulations indicate that the adsorption strength of phenol on the α-Fe2O3(0001) surface is enhanced by the presence of oxygen vacancies. However, the presence of oxygen vacancies has a negative impact on the dissociation of the phenol molecule, particularly for the surface with a defective point at the top layer. Thermo-kinetic parameters were established over a temperature range of 300-1000 K, and lower reaction rate constants were observed for the scission of phenolic O-H bonds over the oxygen-deficient surfaces compared to the pristine surface. The negative effects caused by the oxygen-deficient conditions could be attributed to the local reduction of FeIII to FeII, which lower the oxidizing ability of surface reaction sites. The findings of this study provide us a promising approach to regulate the formation of EPFRs.


Assuntos
Compostos Férricos , Oxigênio , Compostos Férricos/química , Radicais Livres/química , Fenóis , Fenol/química
13.
Front Mol Neurosci ; 17: 1341886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390431

RESUMO

Background and purpose: Calmodulin (CaM) levels exhibit significant elevation in the brain tissue of rodent and cell line models infected with prion, as well as in the cerebrospinal fluid (CSF) samples from patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD). However, the status of CSF CaM in patients with genetic prion diseases (gPrDs) remains unclear. This study aims to assess the characteristics of CSF CaM in Chinese patients presenting four subtypes of gPrDs. Methods: A total of 103 CSF samples from patients diagnosed with T188K-gCJD, E200K-gCJD, D178N-FFI, P102L-GSS were included in this study, along with 40 CSF samples from patients with non-prion diseases (non-PrDs). The presence of CSF CaM and 14-3-3 proteins was assessed using Western blots analysis, while levels of CSF 14-3-3 and total tau were measured using enzyme-linked immunosorbent assays (ELISAs). Statistical methods including multivariate logistic regression were employed to evaluate the association between CSF CaM positivity and relevant clinical, laboratory, and genetic factors. Results: The positive rates of CSF CaM were significantly higher in cases of T188K-gCJD (77.1%), E200K-gCJD (86.0%), and P102-GSS (90.9%) compared to non-PrD cases (22.5%). In contrast, CSF CaM positivity was slightly elevated in D178N-FFI (34.3%). CSF CaM positivity was remarkably high in patients who tested positive for CSF 14-3-3 by Western blot and exhibited high levels of total tau (≥1400 pg/ml) as measures by ELISA. Multivariate logistic regression analysis confirmed a significant association between CSF CaM positivity and specific mutations in PRNP, as well as with CSF 14-3-3 positivity. Furthermore, the diagnostic performance of CaM surpassed that of 14-3-3 and tau when analyzing CSF samples from T188K-gCJD and E200K-gCJD patients. Conclusion: Western blot analysis reveals significant variations in the positivity of CSF CaM among the four genotypes of gPrD cases, demonstrating a positive correlation with 14-3-3 positivity and elevated tau levels in CSF.

14.
Heliyon ; 10(2): e24940, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312617

RESUMO

This study systematically optimized the key operating parameters and interpreted their effecting mechanisms in a flow-electrode capacitive deionization (FCDI) system. The optimal voltage, activated carbon electrode content, electrolyte concentration, feedwater flowrate, and electrode flowrate for desalinating low salinity feedwater (1.0 g L-1 NaCl) were determined to be 1.8 V, 2.0 wt%, 10.0 g L-1, 80 mL min-1, and 60 mL min-1, respectively. The variations of the above parameters can affect the system conductivity, the thickness and stability of the electric double layers, and/or the degree of concentration polarization, thereby influencing the desalination performance. Moreover, a sensitivity analysis identified the operating voltage as the dominant parameter with the most significant influence on the FCDI system. Subsequently, a long-term operation was carried out under single-pass mode. The results showed that the lab-scale FCDI system was able to constantly maintain the desalination efficiency of 1.0 g L-1 feedwater (NaCl) at 40-60 % for multiple operating cycles. Over 99.8 % of electrode material regeneration and desalination efficiency recovery was able to be obtained during a 60-h operation, demonstrating that the FCDI system showed strong stability and long-term operation potential.

15.
Mol Biol Rep ; 51(1): 333, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393425

RESUMO

BACKGROUND: Olfaction plays an important role in host-seeking by parasitoids, as they can sense chemical signals using sensitive chemosensory systems. Psyttalia incisi (Silvestri) (Hymenoptera: Braconidae) is the dominant parasitoid of Bactrocera dorsalis (Hendel) in fruit-producing regions of southern China. The olfactory behavior of P. incisi has been extensively studied; however, the chemosensory mechanisms of this species are not fully understood. RESULTS: Bioinformatics analysis of 64,515 unigenes from the antennal transcriptome of both male and female adults P. incisi identified 87 candidate chemosensory genes. These included 13 odorant-binding proteins (OBPs), seven gustatory receptors (GRs), 55 odorant receptors (ORs), 10 ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs). Phylogenetic trees were constructed to predict evolutionary relationships between these chemosensory genes in hymenopterans. Moreover, the tissue expression profiles of 13 OBPs were analyzed by quantitative real-time PCR, revealing high expression of seven OBPs (1, 3, 6, 7, 8, 12, and 13) in the antennae. CONCLUSION: This study represents the first identification of chemosensory genes and the determination of their expression patterns in different tissues of P. incisi. These results contribute to a better understanding of the function of the chemosensory system of this parasitoid species.


Assuntos
Himenópteros , Receptores Odorantes , Tephritidae , Animais , Himenópteros/genética , Filogenia , Perfilação da Expressão Gênica , Transcriptoma/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
16.
Angew Chem Int Ed Engl ; 63(13): e202318539, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38303647

RESUMO

Cancer has been the most deadly disease, and 13 million cancer casualties are estimated to occur each year by 2030. Gold nanoparticles (AuNPs)-based photothermal therapy (PTT) has attracted great interest due to its high spatiotemporal controllability and noninvasiveness. Due to the trade-off between particle size and photothermal efficiency of AuNPs, rational design is needed to realize aggregation of AuNPs into larger particles with desirable NIR adsorption in tumor site. Exploiting the bioorthogonal "Click and Release" (BCR) reaction between iminosydnone and cycloalkyne, aggregation of AuNPs can be achieved and attractively accompanied by the release of chemotherapeutic drug purposed to photothermal synergizing. We synthesize iminosydnone-lonidamine (ImLND) as a prodrug and choose dibenzocyclooctyne (DBCO) as the trigger of BCR reaction. A PEGylated AuNPs-based two-component nanoplatform consisting of prodrug-loaded AuNPs-ImLND and tumor-targeting peptide RGD-conjugated AuNPs-DBCO-RGD is designed. In the therapeutic regimen, AuNPs-DBCO-RGD are intravenously injected first for tumor-specific enrichment and retention. Once the arrival of AuNPs-ImLND injected later at tumor site, highly photothermally active nanoaggregates of AuNPs are formed via the BCR reaction between ImLND and DBCO. The simultaneous release of lonidamine further enhanced the therapeutic performance by sensitizing cancer cells to PTT.


Assuntos
Indazóis , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Ouro , Terapia Fototérmica , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/uso terapêutico , Oligopeptídeos/uso terapêutico , Linhagem Celular Tumoral
17.
Perfusion ; : 2676591241231901, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321627

RESUMO

Direct percutaneous coronary intervention (PPCI) has significantly reduced cardiac mortality in patients with acute myocardial infarction (AMI), but the mortality rate remains high for those who develop cardiogenic shock (CS), reaching 40% to 50%. Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) provides robust hemodynamic support and oxygen delivery for AMI patients with refractory CS, ensuring adequate organ perfusion and oxygen supply. However, there is currently no standardized optimal Mean Arterial Pressure (MAP) range during V-A ECMO support. Achieving the proper MAP is crucial for adequate myocardial perfusion, cardiac function recovery, successful weaning off of V-A ECMO, and improving long-term outcomes. In this case study, we successfully treated a 55-year-old man with AMI and refractory cardiogenic shock using V-A ECMO. By adjusting ECMO blood flow and employing hemodynamic strategies, including vasoactive drugs, we optimized the MAP, leading to improved cardiac function and successful weaning off of V-A ECMO. This presents a potential opportunity for MAP optimization under ECMO support in patients with acute myocardial infarction and cardiogenic shock.

18.
J Org Chem ; 89(4): 2525-2537, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38300156

RESUMO

Difluoromethylated compounds usually act as bioisosteres for alcohol functional groups and show unique physicochemical and biological properties. The cyano-difluoromethylation of alkenes using 5-((difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole as a CF2H radical difluoromethyl precursor was developed to afford nitriles including a CF2H group. A low-cost, stable, easily handled 5-((difluoromethyl)sulfonyl)-1-methyl-1H-tetrazole (DFSMT) was synthesized and applied as the radical CF2H reagent. Using DFSMT as the radical CF2H precursor, the oxyl-difluoromethylation of alkenes was developed to obtain difluoromethylated ether products. All of the reactions showed good functional group tolerability. Initial mechanistic experiments indicated that the CF2H radical was involved as the key active intermediate.

19.
Nano Lett ; 24(5): 1687-1694, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38253561

RESUMO

Revealing the in-depth structure-property relationship and designing specific capacity electrodes are particularly important for supercapacitors. Despite many efforts made to tune the composition and electronic structure of cobalt oxide for pseudocapacitance, insight into the [CoO]6 octahedron from the microstructure is still insufficient. Herein, we present a tunable [CoO]6 octahedron microstructure in LiCoO2 by a chemical delithiation process. The c-strained strain of the [CoO]6 octahedron is induced to form higher valence Co ions, and the (003) crystalline layer spacing increases to allow more rapid participation of OH- in the redox reaction. Interestingly, the specific capacity of L0.75CO2 is nearly four times higher than that of LiCoO2 at 10 mA g-1. The enhanced activity originated from the asymmetric strain [CoO]6 octahedra, resulting in enhanced electronic conductivity and Co-O hybridization for accelerated redox kinetics. This finding provides new insights into the modification strategy for pseudocapacitive transition metal oxides.

20.
AIDS Res Ther ; 21(1): 8, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297382

RESUMO

BACKGROUND: Studies on antiretroviral therapy (ART) in children living with HIV (CLHIV) are limited due to the small population and low accession rate of ART. METHODS: All 0-14-year-old CLHIV admitted to the Ganzhou Center for Disease Control and Prevention from January 2006 to June 2023 were included retrospectively. The information of treatment regimens, disease progression, and laboratory tests of the patients under ART were used to explore the outcomes and impacts of long-term ART. The normality of all the data was tested by the Shapiro-Wilk test. RESULTS: From 2006 to 2023, 18 CLHIV were reported in Ganzhou. Among them, 11 received ART and were followed up for 60.0 ± 48.4 months. After receiving ART, the median viral load of them decreased from 89,600 copies/ml to 22 copies/ml (P = 0.007), the median CD4+ T cell count increased from 380.7 cells/µL to 661.9 cells/µL (P = 0.028), and the median CD8+ T cell count decreased from 1065.8 cells/µL to 983.3 cells/µL (P = 0.584). The laboratory test results regarding liver function, renal function, blood cell count, and glucolipid metabolism tended to be within normal reference ranges, and the mean height-for-age z-score and weight-for-age z-score increased. However, all the three CLHIV who received cotrimoxazole developed pneumocystis carinii pneumonia, upper respiratory infection, skin lesions, bacterial pneumonia and/or thrush; the mean body-mass-index-for-age z-score decreased from 0.52 to -0.63. CONCLUSION: For CLHIV, ART could effectively inhibit the replication of HIV and improve the immune function of patients. More studies that focus on ART in CLHIV are urgently needed.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Criança , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Infecções por HIV/epidemiologia , Estudos Retrospectivos , Antirretrovirais/uso terapêutico , Progressão da Doença , Contagem de Linfócito CD4 , China/epidemiologia , Carga Viral , Fármacos Anti-HIV/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...