Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119696, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042080

RESUMO

Despite the progress made in understanding relevant carbon dynamics under grazing exclusion, previous studies have underestimated the role of soil bulk density (BD), and its implications for potential accumulation of soil organic carbon (SOC), especially at regional scale over long term. In this study, we first constructed a database covering a vast majority of the grasslands in northwestern China based on 131 published literatures. A synthesis was then conducted by analyzing the experimental data to comprehensively investigate the mechanisms of vegetation recovery, carbon-nitrogen coupling, and the importance of changed soil BD in evaluating SOC sequestration potential. The results showed that although the recovery of vegetation height and cover were both critical for improving vegetation biomass, vegetation height required a longer recovery period. While the SOC accumulation was found to be greater in surface layers than deeper ones, it exhibited a reduced capacity for carbon sequestration and an increased risk of SOC loss. Grazing exclusion significantly reduced soil BD across different soil profiles, with the rate of change influenced by soil depth, time, geographical and climatic conditions. The potential for SOC accumulation in the top 30 cm of soil based on data of 2003-2022 was 0.78 Mg ha-1 yr-1 without considering BD effects, which was significantly underestimated compared to that of 1.16 Mg ha-1 yr-1 when BD changes were considered properly. This suggests that the efficiency of grazing exclusion in carbon sequestration and climate mitigation may have been previously underreported. Furthermore, mean annual precipitation represented the most relevant environmental factor that positively correlated to SOC accumulation, and a wetter climate may offer greater potential for carbon accumulation. Overall, this study implies grazing exclusion may play an even more critical role in carbon sequestration and climate change mitigation over long-term than previously recognized, which provides essential scientific evidence for implementing stepwise ecological restoration in grasslands.


Assuntos
Carbono , Solo , Carbono/análise , Pradaria , Biomassa , China , Sequestro de Carbono
2.
ACS Appl Mater Interfaces ; 15(50): 58286-58295, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052074

RESUMO

Two-dimensional (2D) perovskite solar cells (PSCs) have attracted rapid growing attention due to their excellent environmental and operational stability. As an important type of 2D perovskite, Dion-Jacobson (DJ) 2D perovskites exhibit better structural integrity and more stable optoelectronic properties than those of Ruddlesden-Popper (RP) ones because of the elimination of weak van der Waals interactions. Random phase distribution, phase impurity, and weak crystallinity, however, can lead to severe nonradiative recombination losses in 2D perovskites and inferior device stability. Herein, formamidinium chloride (FACl) and lead chloride (PbCl2) are selected as additives to fabricate efficient and stable DJ 2D PSCs. The synergistic effect of additives could efficiently induce crystallization and suppress the low-n phase perovskites. The obtained 2D perovskites exhibit extended charge lifetime and enhanced charge transfer. The corresponding PSC device delivers an efficiency of 16.63% with a significantly improved open-circuit voltage (VOC) of 1.18 V and a fill factor (FF) of 81.65% than the control one. This PCE ranks the highest for inverted FA-based 2D DJ PSCs. Moreover, this device has exhibited exceptional long-term stability, which retains more than 95% of the initial efficiencies at about 50% relative humidity for 600 h.

3.
Carbon Balance Manag ; 18(1): 16, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568051

RESUMO

BACKGROUND: China's high-quality economic development depends on achieving sustainable economic development, reaching peak carbon emissions, achieving carbon neutrality, and intensifying the development of an industrial and energy structure that saves resources and protects the environment. This study used the data envelopment analysis (DEA) model and the Malmquist productivity index to measure the economic development performance of mainland China under carbon emission constraints. Then, it described the spatiotemporal evolution of economic development performance and analyzed its influencing factors using the Tobit model. RESULTS: The results revealed that there were obvious differences in the trends of the static and dynamic performance of economic development. On the one hand, the static performance of economic development exhibited an upward trend from 2008 to 2020. Its distribution characteristics were dominant in the higher and high-level areas. On the other hand, the dynamic performance had a downward trend from 2008 to 2016 and then an upward trend from 2016 to 2020. In most provinces, the dynamic performance was no longer constrained by technological progress but rather by scale efficiency. It was found that the main factors influencing economic development performance were urbanization level, energy efficiency, vegetation coverage, and foreign investment, while other factors had no significant influence. CONCLUSIONS: This study suggests that China should improve its economic development performance by increasing the use of clean energy, promoting human-centered urbanization, increasing carbon absorption capacity, and absorbing more foreign capital in the future.

4.
Environ Sci Pollut Res Int ; 30(34): 82575-82588, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37326739

RESUMO

Studying the comprehensive performance of industrial carbon emission has profound significance for improving carbon allowance allocation scheme and achieving the carbon neutrality target. The paper selects 181 enterprises in Zhengzhou as the case, a comprehensive carbon emission performance indicator system and a carbon allowance allocation model were established, and compared with other allocation schemes (historical/baseline method). The results showed that the overall differences in the comprehensive performance evaluation indicator of carbon emissions in typical industries in Zhengzhou were obvious, and there was a correlation with the characteristics of industrial production activities. The overall emission reduction of Zhengzhou was 244.33×103t, and the emission reduction ratio was 7.94% by simulating carbon allowance allocation under the comprehensive performance. The carbon allowance allocation method based on the comprehensive performance has the strongest restraint on the "high emission, low performance" industry, which is more equitable and more conducive to carbon emission reduction. In the future, it will be recommended to give full play to the leading role of the government, implement industrial carbon allowance allocation based on the comprehensive performance evaluation of carbon emissions, to achieve multi-objectives of resource conservation, environmental pollution abatement, and carbon reduction.


Assuntos
Carbono , Poluição Ambiental , Carbono/análise , Indústrias , Desenvolvimento Econômico , Dióxido de Carbono/análise , China
5.
Sci Total Environ ; 860: 160493, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36435239

RESUMO

Despite the tremendous contribution of irrigated agriculture in addressing global food security, there is still confusion for farmers and governments about the choice of irrigation mode owing to the drastic environmental impacts of irrigation, including water shortage, energy crisis, and global warming. Exploring the agricultural water-energy­carbon (WEC) nexus under different irrigation modes helps to accomplish the multi-objective of water & energy saving and carbon emission reduction. In this paper, a conceptual framework was nominated to evaluate the water & energy consumption and carbon emissions for winter wheat irrigation at township level and quantitatively discuss the complex interaction by the coupling coordination degree (CCD) of the WEC system under different irrigation modes in Henan Province, China. We discovered that irrigation modes profoundly affect water and energy consumption and carbon emissions in agriculture, as well as the spatial distribution of CCD from WEC system. Townships under irrigation mode with diversion and irrigation projects as the primary method (WDI) clustered together in the north and east with highest water consumption and carbon emissions, while townships under irrigation mode with rain-fed agriculture as the primary method (PI) accumulated in the west and south with lower water consumption and carbon emissions. Meanwhile, the CCD of the WEC nexus system was in basic coordination (0.40) and showed an unbalanced spatial distribution pattern with high in the southeast and low in the northwest. By comparing four irrigation modes, the coupling level of the WEC nexus system under irrigation mode with groundwater irrigation as the primary method (GI) was better and PI mode was the least ideal. This study helps to further understand agricultural WEC nexus under different irrigation modes and provide references for local governments in selecting appropriate irrigation modes to realize water-energy saving and carbon emission reduction in agricultural activities.


Assuntos
Irrigação Agrícola , Água , Irrigação Agrícola/métodos , Água/análise , Carbono , Agricultura/métodos , Aquecimento Global , China
6.
Materials (Basel) ; 15(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431500

RESUMO

In this paper, a new aromatic diamine monomer 4,4'-(2,6-naphthalenediyl)bis[benzenamine]) (NADA) was synthesized and a series of modified PI films containing naphthalene ring structure obtained by controlling the molar ratio of NADA monomer, ternary polymerization with 4,4'-oxydianiline (ODA), and pyromellitic dianhydride (PMDA). The effects of the introduction of the naphthalene ring on the free volume and various properties of PI were investigated by molecular dynamic simulations. The results show that the comprehensive properties of the modified films are all improved to some extent, with 5% thermal weight loss temperature (Td5%) of 569 °C, glass transition temperature (Tg) of 381 °C, tensile strength of 96.41 MPa, and modulus of elasticity of 2.45 GPa. Dielectric property test results show that the dielectric constant (Dk) of the film at 1 MHz is reduced from 3.21 to 2.82 and dielectric loss (Df) reduced from 0.0091 to 0.0065. It is noteworthy that the PI-1 dielectric constant is reduced from 3.26 to 3.01 at 10 GHz with only 5% NADA doping, which is expected to yield the best ratio and provide the possibility of industrial production.

7.
ACS Appl Mater Interfaces ; 13(43): 50836-50850, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34689546

RESUMO

Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface. The PEEK surface with the multifunctional coating provides superior hydrophilicity and favorable stability and forms an alkaline microenvironment when Mg2+, Zn2+, 2,5-dihydroxyterephthalic acid, and DEX are released due to the coating degradation. In vitro results showed that the multifunctional coating has strong antibacterial ability against both Escherichia coli and Staphylococcus aureus; it also improves human umbilical vein endothelial cell angiogenic ability and enhances rat bone marrow mesenchymal stem cell osteogenic differentiation activity. Furthermore, the in vivo rat subcutaneous infection model, chicken chorioallantoic membrane model, and rat femoral drilling model verify that the PEEK implant coated with the multifunctional coating has strong antibacterial and angiogenic ability and promotes the formation of new bone around the implant with a stronger bone-implant interface. Our findings indicate that DEX loaded on the Zn-Mg-MOF74 coating-modified PEEK implant with bacteriostasis, angiogenesis, and osteogenesis properties has great clinical application potential as bone graft materials.


Assuntos
Antibacterianos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Neovascularização Patológica/tratamento farmacológico , Adsorção , Animais , Antibacterianos/síntese química , Antibacterianos/química , Benzofenonas/química , Benzofenonas/farmacologia , Dexametasona/química , Dexametasona/farmacologia , Escherichia coli/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Masculino , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neovascularização Patológica/microbiologia , Polímeros/química , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Zinco/química , Zinco/farmacologia
8.
Glob Chang Biol ; 27(24): 6321-6330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583427

RESUMO

Despite the strong recommendations from scientists, to till or not to till remains a confusing question for many farmers around the world due to the worries of crop yield decline and negative impacts on soils and environment. A confused understanding of the role of the individual principles of conservation agriculture significantly limits the effectiveness and applicability of soil conservation strategies and frameworks to achieve sustainable agriculture. By distinguishing clearly between the different principles of conservation agriculture, the net effects of no-tillage on improving and sustaining agro-ecosystems are analyzed based on 49 recent meta-analyses in this study. The review shows that no-tillage leads to a significant decline of crop yield (-8.0% to 10.0%, median: -1.9%), whereas residue retention represents the key driver for improving crop production (4.0%-28.0%, median: 8.2%). The efficacy of no-tillage for water erosion control, especially runoff (-24.0% to -0.7%, median: -10.0%), is often insignificant and otherwise lower compared to residue retention (-87.0% to -14.0%, median: -45.5%). Soil carbon sequestration potential under conservation tillage is quite limited or even close to zero, and if any, it can likely be attributed to the associated residue retention (-0.1% to 12.8%, median: 9.7%) rather than no-tillage (-2.0% to 10.0%, median: 4.8%). Our analysis illustrates that in conservation agriculture, no-tillage as the original and central principle of soil management is often less effective than associated supplementary measures, in particular residue retention. Residue retention may therefore play a key role for achieving sustainable land use. An additional benefit of residue retention is the less dramatic change of farming practices compared to no-tillage. The results of this review illustrate that a new framework for assessing the benefits of conservation practices has to be developed. To till, or not to till, is not the question: residue retention seems more critical.


Assuntos
Agricultura , Ecossistema , Sequestro de Carbono , Produção Agrícola , Solo
9.
ChemSusChem ; 14(17): 3614-3621, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34107177

RESUMO

Three small-molecule acceptors (Por-PDI, TEHPor-PDI, and BBOPor-PDI) with different side chains were synthesized by using a porphyrin core as the electron-donating unit and connecting electron-withdrawing perylene diimide dimers via acetylene bridges. The bulk heterojunction organic solar cells based on the three acceptors and a polymer donor provided power conversion efficiencies (PCEs) of 3.68-5.21 % when the active layers were fabricated with pyridine additives. Though the synthesis of Por-PDI is easier with fewer reaction steps and higher yields, the devices based on Por-PDI showed the best performance with a PCE of 5.21 %. The more ordered intermolecular packing due to the reduced steric hindrance at the porphyrin core of Por-PDI could contribute to the more balanced hole/electron mobilities, higher maximum charge generation rate, and less bimolecular recombination in Por-PDI devices, which are beneficial for the higher PCE.

10.
Sci Total Environ ; 778: 146308, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721652

RESUMO

Soil conservation measures (SCM) are believed to be effective in terms of wind erosion control. Currently, most studies regarding the efficacy of SCM in erosion control are based on data of individual experimental sites. A comprehensive understanding of the effectiveness of SCM and related impacting factors at large scale is lacking. A synthesis was conducted in this study based on data compiled from field experiments in major eroded regions of China in order to fully evaluate the efficacy of various SCM practices in erosion reduction, and further assess how their efficacy varied under different environmental conditions. Two main SCM categories were identified, i.e. agricultural measures (AM) used for both crop production and erosion control, and vegetation measures (VM) used for erosion control only. The results showed that SCM could lead to a significant reduction of wind erosion by over a half (0.51). The reduction of wind erosion under VM (0.56) was significantly higher than AM (0.46). Specifically, most AM and all the VM investigated in this study were beneficial for wind erosion control. Multiple cropping was the only practice that significantly increased the wind erosion rate compared to the conventional treatment. We further found that the effectiveness of SCM highly dependent on precipitation, temperature, soil organic carbon concentration, soil water content, soil type, elevation, and vegetation coverage. The responses of the efficacy of AM and VM to these environmental conditions also differed. Another important finding is that the lowest efficacy of SCM in erosion control was observed in regions with the highest erosion risk, indicating the greater challenge in erosion reduction in these regions. The efficacy of SCM quantified in this study can be used as an essential reference for the adoption of SCM in China and the environmental conditions should also be considered carefully when designing a SCM application framework.

11.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33028517

RESUMO

Nanoporous membranes with two-dimensional materials such as graphene oxide have attracted attention in volatile organic compounds (VOCs) and H2 adsorption because of their unique molecular sieving properties and operational simplicity. However, agglomeration of graphene sheets and low efficiency remain challenging. Therefore, we designed hierarchical nanoporous membranes (HNMs), a class of nanocomposites combined with a carbon sphere and graphene oxide. Hierarchical carbon spheres, prepared following Murray's law using chemical activation incorporating microwave heating, act as spacers and adsorbents. Hierarchical carbon spheres preclude the agglomeration of graphene oxide, while graphene oxide sheets physically disperse, ensuring structural stability. The obtained HNMs contain micropores that are dominated by a combination of ultramicropores and mesopores, resulting in high VOCs/H2 adsorption capacity, up to 235 and 352 mg/g at 200 ppmv and 3.3 weight % (77 K and 1.2 bar), respectively. Our work substantially expands the potential for HNMs applications in the environmental and energy fields.

12.
ACS Appl Mater Interfaces ; 12(37): 41852-41860, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32811138

RESUMO

Recent advances in non-fullerene acceptors (NFAs) have resulted in significant improvement in the power conversion efficiencies (PCEs) of organic solar cells (OSCs). In our efforts to boost open-circuit voltage (VOC) for OSCs, the molecular design employing thiobarbituric acid (TBTA) end groups and an indacenodithieno[3,2-b]thiophene (IDTT) core gives rise to NFAs with significantly raised lowest unoccupied molecular orbital (LUMO) energy level, which, when paired with PCE10, can achieve VOC's over 1.0 V and decent PCEs that outperform the equivalent devices based on the benchmark ITIC acceptor. While the use of a TBTA end group is effective in tuning energy levels, very little is known about how the alkyl substitution on the TBTA group impacts the solar cell performance. To this end, TBTA end groups are alkylated with linear, branched, and aromatic sidechains to understand the influence on thin-film morphology and related device performances. Our study has confirmed the dependence of solar cell performance on the end-group substituents. More importantly, we reveal the presence of an ideal window of crystallinity associated with the medium-length hydrocarbon chains such as ethyl and benzyl. Deviation to the shorter methyl group makes the acceptor too crystalline to mix with the polymer donor and form proper domains, whereas longer and branched alkyl chains are too sterically bulky and hinder charge transport due to nonideal packing. Such findings underline the comprehensive nature of thin-film morphology and the subtle end-group effects for the design of non-fullerene acceptors.

13.
Sci Total Environ ; 736: 139478, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32485370

RESUMO

No tillage (NT) has been recommended as an essential conservation agriculture (CA) management in terms of water erosion control. However, the term of NT actually represents both NT and NT plus straw mulching (NTS) in a large amount of studies, which is out of the scope of its original meaning. Consequently, the mixed use of the two terms may cause biased estimate of the role of NT in erosion reduction. We aimed to distinguish actual roles of tillage reduction and residue retention in erosion control based on published data from field experiments of China. A database of paired experiments was compiled from 40 published literatures, with tillage practices including conventional tillage, reduced tillage, no tillage, and their combinations with residue retention. Variable-controlling approach was adopted to comprehensively identify the roles of tillage reduction and residue retention in runoff and soil loss reduction. Our results showed that residue retention caused significant decline of both water and sediment loss, whereas tillage reduction only led to insignificant change of runoff and soil loss. No tillage plus residue retention was also beneficial in terms of erosion control, very likely due to the application of residue retention. The results strengthen the higher influence of residue retention over tillage reduction with respect to soil and water conservation. It also challenges the conclusion of previous studies that NT could lead to the reduction of both runoff and soil loss based on the mixed use of NT and NTS. Furthermore, the efficiency of straw mulching in erosion control declines as application duration increases, indicating the effects of CA should not be overestimated in longer-term. The effectiveness of CA in erosion control also differs among various soil types. Overall, this study highlights the necessity of understanding the influences of tillage reduction, residue retention and the combination of the two managements in order to better evaluate and manage CA with respect to water erosion control, but the impacts of application duration of CA and soil types must be properly considered when adopting CA to reduce erosion.

14.
ACS Appl Mater Interfaces ; 12(14): 16387-16393, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32180392

RESUMO

Ternary organic solar cells (OSCs) provide a convenient and effective means to further improve the power conversion efficiency (PCE) of binary ones via composition control. However, the role of the third component remains to be explored in specific binary systems. Herein, we report ternary blend solar cells by adding the narrow-band-gap donor PCE10 as the mediator into the PBDB-T:IDTT-T binary blend system. The extended absorption, efficient fluorescence resonance energy transfer, enhanced charge dissociation, and induced tighter molecular packing of the ternary blend films enhance the photovoltaic properties of devices and deliver a champion PCE of 10.73% with an impressively high open-circuit voltage (VOC) of 1.03 V. Good miscibility and similar molecular packing behavior of the components guarantee the desired morphology in the ternary blend films, leading to solar cell devices with over 10% PCEs at a range of compositions. Our results suggest that ternary systems with properly aligned energy levels and overlapping absorption among the components hold great promises to further enhance the performance of corresponding binary ones.

15.
Carbon Balance Manag ; 14(1): 14, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754840

RESUMO

Climate change has emerged as one of the most important environmental issues worldwide. As the world's biggest developing country, China is participating in combating climate change by promoting a low carbon economy within the context of global warming. This paper summarizes the pathways of China's low carbon economy including the aspects of energy, industry, low carbon cities, circular economy and low carbon technology, afforestation and carbon sink, the carbon emission trading market and carbon emission reduction targets. There are many achievements in the implementation of low carbon policies. For example, carbon emission intensity has been reduced drastically along with the optimizing of energy and industry structure and a nationwide carbon trading market for electricity industry has been established. However, some problems remain, such as the weakness of public participation, the ineffectiveness of unified policies for certain regions and the absence of long-term planning for low carbon cities development. Therefore, we propose some policy recommendations for the future low carbon economy development in China. Firstly, comprehensive and long-term planning should be involved in all the low carbon economy pathways. Secondly, to coordinate the relationship between central and local governments and narrow the gap between poor and rich regions, different strategies of carbon emission performance assessment should be applied for different regions. Thirdly, enterprises should cooperate with scientific research institutions to explored low carbon technologies. Finally, relevant institutions should be regulated to realize comprehensive low carbon transition through reasonable and feasible low carbon pathways in China. These policy recommendations will provide new perspectives for China's future low carbon economy development and guide practices for combating climate change.

16.
ACS Appl Mater Interfaces ; 10(1): 668-675, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29241328

RESUMO

Small molecules (SMs) with elongated backbones are promising for achieving a higher photovoltaic performance. Herein, a dimeric porphyrin small molecule, ZnP2-DPP, consisting of two porphyrin units linked with an ethynylene as the core and two diketopyrrolopyrrole (DPP) units as the arms is designed and synthesized as an electron donor for solution-processed bulk-heterojunction (BHJ) organic solar cells (OSCs). A significantly enhanced power conversion efficiency of 8.45% with an impressive short-circuit current density (Jsc) up to 19.65 mA cm-2 is achieved for the BHJ OSCs based on ZnP2-DPP under AM 1.5G irradiation (100 mW cm-2) compared to that for the OSCs based on the dimeric porphyrin linked with bis-ethynylenes reported previously. Furthermore, the devices show broad photoelectron responses up to 1000 nm with high near-infrared external quantum efficiency up to 66% at 780 nm. This is the first study reporting SM OSCs displaying such a large Jsc of about 20 mA cm-2 simultaneously with a considerably high and deep photoelectron response of up to 1000 nm.

17.
Science ; 358(6366): 1008-1009, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170227
18.
ACS Appl Mater Interfaces ; 9(35): 29917-29923, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28809536

RESUMO

Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.

19.
Chem Commun (Camb) ; 53(37): 5113-5116, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28435939

RESUMO

Three conjugated D-A porphyrin dimers (DPP-ZnP-E)2, (DPP-ZnP-E)2-2T and (DPP-ZnP-E)2-Ph linked with diethynylene, diethynylene-dithiophene and diethynylene-phenylene have been developed for bulk heterojunction solar cells with high power conversion efficiencies of 4.50%, 5.50% and 6.42%, respectively, when blended with PC61BM as the electron acceptor material.

20.
ACS Appl Mater Interfaces ; 9(8): 7131-7138, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185448

RESUMO

A porphyrin-based molecule DPPEZnP-BzTBO with bulky benzothiophene groups was designed and synthesized as an electron donor material for bulk heterojunction (BHJ) solar cells. The optimized devices under thermal annealing (TA) and then chloroform solvent vapor anneanling (SVA) for 80 s exhibited an outstanding power conversion efficiencie (PCE) of 9.08%. Contrasted with the smaller thienyl substituted analogues we reported previously, DPPEZnP-BzTBO-based BHJ solar cells exhibited a higher open circuit voltage due to the lower highest occupied molecular orbital energy level. The TA post-treatment of the active layers induced the formation of more crystallized components, and the subsequent SVA provided a driving force for the domain growth, resulting in more obvious phase segregation between the donor and the acceptor in nanoscale. Furthermore, the PCEs kept above 95% upon the further SVA treatment within the time range of 60 to 95 s probably because the bulky benzothiophene groups retard the too quick change of crystallinity, providing a wide processing window for the reproducible device fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...