Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reprod Immunol ; 164: 104254, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38761508

RESUMO

Bovine viral diarrhoea virus (BVDV) can infect cows on days 30-110 of gestation and crossing the placental barrier, resulting in persistently infected (PI) and causing significant economic losses to dairy farming. Bovine placental trophoblast cells (BTCs) are the major cells in the early chorionic tissue of the placenta and play important roles in placental resistance to viral transmission. In this study, we have confirmed that BTCs is among a groups of cell types those could be infected by BVDV in vivo, and BVDV infection stimulates the autophagic responses in BTCs and promotes the release of exosomes. Meanwhile, the exosomes derived from BTCs can be used by BVDV to spread between placental trophoblast cells, and this mode of transmission cannot be blocked by antibodies against the BVDV E2 protein, whereas the replication and spread of BVDV in BTCs can be blocked by inhibiting autophagy and exosomogenesis. Our study provides a theoretical and practical basis for scientific prediction and intervention of reproductive disorders caused by BVDV infection in cows of different gestation periods from a novel perspective.

2.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611353

RESUMO

AIMS: The study aimed to evaluate the effects of dietary folic acid (FA) on the production performance of laying hens, egg quality, and the nutritional differences between eggs fortified with FA and ordinary eggs. METHODS: A total of 288 26-week-old Hy-Line Brown laying hens (initial body weights 1.65 ± 0.10 kg) with a similar weight and genetic background were used. A completely randomized design divided the birds into a control group and three treatment groups. Each group consisted of six replicates, with twelve chickens per replicate. Initially, all birds were fed a basal diet for 1 week. Subsequently, they were fed a basal diet supplemented with 0, 5, 10, or 15 mg/kg FA in a premix for a duration of 6 weeks. RESULTS: Supplementation of FA could significantly (p < 0.05) enhance the FA content in egg yolks, particularly when 10 mg/kg was used, as it had the most effective enrichment effect. Compared to the control group, the Glu content in the 10 and 15 mg/kg FA groups showed a significant (p < 0.05) decrease. Additionally, the contents of Asp, Ile, Tyr, Phe, Cys, and Met in the 15 mg/kg FA group were significantly (p < 0.05) lower compared to the other groups. Adding FA did not have significant effects on the levels of vitamin A and vitamin E in egg yolk, but the vitamin D content in the 5 and 10 mg/kg FA groups showed a significant (p < 0.05) increase. Furthermore, the addition of FA did not have a significant effect on the levels of Cu, Fe, Mn, Se, and Zn in egg yolk. The dietary FA did not have a significant effect on the total saturated fatty acids (SFA) and polyunsaturated fatty acid (PUFA) content in egg yolk. However, the total monounsaturated fatty acid (MUFA) content in the 5 and 10 mg/kg groups significantly (p < 0.05) increased. These changes in nutritional content might be attributed to the increased very low-density lipoprotein (VLDL) protein content. The significant decrease in solute carrier family 1 Member 1 (SLC1A1), solute carrier family 1 Member 2 (SLC1A2), and solute carrier family 1 Member 3 (SLC1A3) gene expression compared to the control group appeared to be the reason for the decrease in amino acid content in egg yolk within the dietary FA group. CONCLUSION: The findings suggest that the appropriate addition of FA can enhance the levels of MUFA and vitamin D in egg yolks, thereby improving their nutritional value. Excessive intake of FA can decrease the effectiveness of enriching FA in egg yolk and impact the enrichment of certain amino acids. The yolk of eggs produced by adding 10 mg/kg of FA to the feed contains the optimal amount of nutrients. This study informs consumers purchasing FA-fortified eggs.

3.
Phytomedicine ; 128: 155468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471315

RESUMO

BACKGROUND: Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE: The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN: The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS: First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS: In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION: Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.


Assuntos
Autofagia , Curcumina , Ovário , Estresse Oxidativo , Serina-Treonina Quinases TOR , Animais , Feminino , Camundongos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Curcumina/farmacologia , Células da Granulosa/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Nitrocompostos , Ovário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Propionatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
4.
Antioxidants (Basel) ; 13(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397781

RESUMO

As a pivotal player in spermatogenesis, the blood-testis barrier (BTB) made from junction apparatus coexisting in Sertoli cells (SCs) is impaired with an increase in age and ultimately induces spermatogenic dysfunction or even infertility. It has been corroborated that bone marrow mesenchymal stem cell (BMSC) transplantation can efficiently repair and regenerate the testicular function. As vital mediators of cell-to-cell communication, MSC-derived exosomes (Exos) can directly serve as therapeutic agents for tissue repair and regeneration. However, the therapeutic value of BMSC-Exos in aging-induced BTB damage remains to be confirmed. In this study, we explored that the old porcine testes had defective autophagy, which aggravated BTB disruption in SCs. BMSC-Exos could decrease ROS production and NLRP3 inflammasome activation but enhanced autophagy and tight junction (TJ) function in D-gal-triggered aging porcine SCs and mouse model testes, according to in vitro and in vivo experiments. Furthermore, rapamycin, NAC, MCC950, and IL-1Ra restored the TJ function in D-gal-stimulated aging porcine SCs, while BMSC-Exos' stimulatory effect on TJ function was inhibited by chloroquine. Moreover, the treatment with BMSC-Exos enhanced autophagy in D-gal-induced aging porcine SCs by means of the AMPK/mTOR signal transduction pathway. These findings uncovered through the present study that BMSC-Exos can enhance the BTB function in aging testes by improving autophagy via the AMPK/mTOR signaling pathway, thereby suppressing ROS production and NLRP3 inflammasome activation.

5.
Adv Healthc Mater ; 13(8): e2302659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38011489

RESUMO

Developing next-generation antibiotics to eliminate multidrug-resistant (MDR) bacteria/fungi and stubborn biofilms is challenging, because of the excessive use of currently available antibiotics. Herein, the fabrication of anti-infection graphene quantum dots (GQDs) is reported, as a new class of topoisomerase (Topo) targeting nanoantibiotics, by modification of rich N-heterocycles (pyridinic N) at edge sites. The membrane-penetrating, nucleus-localizing, DNA-binding GQDs not only damage the cell walls/membranes of bacteria or fungi, but also inhibit DNA-binding proteins, such as Topo I, thereby affecting DNA replication, transcription, and recombination. The obtained GQDs exhibit excellent broad-spectrum antimicrobial activity against non-MDR bacteria, MDR bacteria, endospores, and fungi. Beyond combating planktonic microorganisms, GQDs inhibit the formation of biofilms and can kill live bacteria inside biofilms. RNA-seq further demonstrates the upregulation of riboflavin biosynthesis genes, DNA repair related genes, and transport proteins related genes in methicillin-resistant S. aureus (MRSA) in response to the stress induced by GQDs. In vivo animal experiments indicate that the biocompatible GQDs promote wound healing in MRSA or C. albicans-infected skin wound models. Thus, GQDs may be a promising antibacterial and antifungal candidate for clinical applications in treating infected wounds and eliminating already-formed biofilms.


Assuntos
Anti-Infecciosos , Grafite , Staphylococcus aureus Resistente à Meticilina , Pontos Quânticos , Animais , Grafite/química , Pontos Quânticos/química , Antibacterianos/química
6.
J Cell Physiol ; 239(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991438

RESUMO

Abnormal function and fibrosis of endometrium caused by cows' endometritis pose difficult implantation of embryos and uterine cavity adhesions. 17ß-Estradiol (E2) serves as the most effective aromatized estrogen, and its synthetase and receptors have been detected in the endometrium. Studies have demonstrated the positive role of estrogen in combating pathological fibrosis in diverse diseases. However, it is still unknown whether E2 regulates endometrium fibrosis in bovine endometritis. Herein, we evaluated the expression patterns of transforming growth factor-ß1 (TGF-ß1), epithelial-mesenchymal transformation (EMT)-related proteins (α-SMA, vimentin N-cadherin and E-cadherin), cytochrome P450 19A1 (CYP19A1), and G protein-coupled estrogen receptor (GPER) in bovine healthy endometrium and Inflammatory endometrium. Our data showed that the inflamed endometrium presented low CYP19A1 and GPER expression, and significantly higher EMT process versus the normal tissue. Moreover, we established a TGF-ß1-induced fibrosis model in BEND cells, and found that E2 inhibited the EMT process of BEND cells in a dose-dependent manner. The anti-fibrotic effect of E2 was blocked by the GPER inhibitor G15, but not the estrogen nuclear receptors (ERs) inhibitor ICI182780. Moreover, the GPER agonist G1 inhibited fibrosis and Smad2/3 phosphorylation but increased the expression of TGFBR3 in BEND cells. Transfection with TGFBR3 small interfering RNA blocked the effect of G1 on fibrosis of BEND cells and upregulated the expression of P-Smad2/3. Our in vivo data also showed that E2 and G1 affected uterus fibrosis in mice endometritis model caused by LPS, which was associated with the inhibition of TGFBR3/Smad2/3 signaling. In conclusion, our data implied that E2 alleviates the fibrosis of TGF-ß1-induced BEND cells, which is associated with the GPER mediation of TGFBR3/Smad2/3 signaling.


Assuntos
Endometrite , Estradiol , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Feminino , Camundongos , Endometrite/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Estradiol/farmacologia , Estrogênios/metabolismo , Fibrose , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
7.
Animals (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067074

RESUMO

Abnormal function and the fibrosis of endometrium caused by endometritis in cows may lead to difficult embryo implantation and uterine cavity adhesions. Emerging evidence indicates that ginsenoside Rg1 can effectively resist inflammation and pathological fibrosis in different organs. It is hypothesized that ginsenoside Rg1 may possess the potential to mitigate endometrial fibrosis induced by lipopolysaccharides (LPS) in dairy cows. Herein, a model of LPS-stimulated fibrosis was constructed using bovine endometrial epithelial cell line (BEND) cells and ICR mice. Western blotting was used to detect the protein level, and reactive oxygen species (ROS) content was measured by means of DCFH-DA. The uterine tissue structure was stained with H&E and Masson staining. The murine endometrium was assessed for oxidative stress by detecting the concentration of MDA together with the activity of enzymatic antioxidants SOD and CAT. Ginsenoside Rg1 interfered with NLRP3 activation by reducing ROS generation. After the application of ROS inhibitor NAC and NLRP3 inhibitor MCC950, ginsenoside Rg1 could interfere in the ROS/NLRP3 inflammasome signaling pathway by suppressing the epithelial-mesenchymal transition (EMT) of BEND cells. Our in vivo data showed that ginsenoside Rg1 relieved endometrial fibrosis of the mouse model of LPS-induced endometritis by restraining the ROS/NLRP3 inflammasome signaling pathway. Ginsenoside Rg1 inhibits LPS-induced EMT progression in BEND cells probably by inhibiting the activation of ROS-NLRP3 inflammasome.

8.
Poult Sci ; 102(12): 103135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856906

RESUMO

Sperm motility is an important index for the evaluation of semen quality. Improving sperm motility is important to improve reproductive performance, promote breeding process, and reduce production cost. However, the molecular mechanisms regulating sperm motility in chickens remain unclear. In this study, histological observation and whole-transcriptome analysis were performed on testicular tissue of chickens with high and low sperm motility. Histological observations showed that roosters with high sperm motility exhibited better semen quality than those with low sperm motility. In addition, the germinal epithelial cells of roosters with low sperm motility were loosely arranged and contained many vacuoles. RNA-seq results revealed the expression of 23,033 mRNAs, 2,893 lncRNAs, and 515 miRNAs in chicken testes. Among them, there were 417 differentially expressed mRNAs (DEmRNAs), 106 differentially expressed lncRNAs (DElncRNAs), and 15 differentially expressed miRNAs (DEmiRNAs) between high and low sperm motility testes. These differentially expressed genes were involved in the G protein-coupled receptor signaling pathway, cilia structure, Wnt signaling, MAPK signaling, GnRH signaling, and mTOR signaling. By integrating the competitive relationships between DEmRNAs, DElncRNAs, and DEmiRNAs, we identified the regulatory pathway of MSTRG.3077.3/MSTRG.9085.1-gga-miR-138-5p-CADM1 and MSTRG.2290.1-gga-miR-142-3p-GNAQ/PPP3CA as crucial in the modulation of chicken sperm motility. This study provides new insights into the function and mechanism of ceRNAs in regulating sperm motility in chicken testes.


Assuntos
MicroRNAs , RNA Longo não Codificante , Masculino , Animais , Galinhas/fisiologia , Motilidade dos Espermatozoides/genética , Análise do Sêmen/veterinária , Transcriptoma , RNA Longo não Codificante/genética , MicroRNAs/genética
9.
Poult Sci ; 102(11): 103035, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672836

RESUMO

Intramuscular fat (IMF) is an important factor affecting chicken quality. However, the age-related mechanism of IMF deposition has not yet been elucidated. In this study, the IMF, phospholipids (PL), triglycerides (TG), and fatty acid (FA) content in the breast muscle of Beijing-You chicken (BJY) at 1, 56, 98, and 120 d of age was measured, and mRNA and miRNA sequencing was integrated to explore the regulatory genes of IMF deposition. The results showed that the IMF content of BJY at 1 d of age was significantly higher than that at later stage of birth (P < 0.05). The transcriptome sequencing results showed that 7, 225 differentially expressed genes (DEGs) and 243 differentially expressed miRNAs (DE-miRNAs) were identified. The cluster analysis showed that the expression of DEGs and DE-miRNAs at 1 d of age was significantly different from that at later stages of birth. Furthermore, a potential mRNA-miRNA regulatory network related to IMF deposition was established by weighted gene co-expression network analysis (WGCNA); gga-miR-29c-3p-PIK3R1, gga-miR-6701-3p-PTEN, gga-miR-363-3p-PTEN, gga-miR-1563-WWP1, gga-miR-449c/d-5p-TRAF6, and gga-miR-6701-3p-BMPR1B were identified as key mRNA-miRNA pairs for the regulation of IMF deposition. These results will help elucidate the mechanism of IMF formation mediated by miRNAs in chickens, and provide a theoretical foundation for the genetic improvement of broiler meat quality.

10.
Theriogenology ; 209: 170-177, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393747

RESUMO

As a functional fatty acid, α-linolenic acid (ALA) is essential in promoting animal testosterone biosynthesis. This study investigated the effects of ALA on testosterone biosynthesis and the possible mechanism underlying the signaling pathway in primary Leydig cells of the rooster. METHODS: Primary rooster Leydig cells were treated with ALA (0, 20, 40, or 80 µmol/L) or pretreated with a p38 inhibitor (50 µmol/L), a c-Jun NH2-terminal kinase (JNK) inhibitor (20 µmol/L), or an extracellular signal-regulated kinase (ERK) inhibitor (20 µmol/L) before ALA treatment. Testosterone content in the conditioned culture medium was detected using an enzyme-linked immunosorbent assay (ELISA). The expression of steroidogenic enzymes and JNK-SF-1 signaling pathway factors was detected using real-time fluorescence quantitative PCR (qRT-PCR). RESULTS: Supplementation with ALA significantly increased testosterone secretion within culture media (P < 0.05), and the optimized dose was 40 µmol/L. Compared with the control group, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA expression significantly increased (P < 0.05) in the 40 µmol/L ALA group; 17-hydroxylase/c17-20 lyase (P450c17) and p38 mRNA expressions were not significantly different in the 40 µmol/L ALA group; ERK and JNK mRNA expressions were significantly upregulated (P < 0.05) in 40 µmol/L ALA group. In the inhibitor group, testosterone levels were significantly downregulated (P < 0.05). Compared with the 40 µmol/L ALA group, StAR, P450scc, and P450c17 mRNA expressions were significantly decreased (P < 0.05), and 3ß-HSD mRNA expression in the p38 inhibitor group did not change; StAR, P450scc, and 3ß-HSD mRNA expressions were significantly decreased (P < 0.05), and P450c17 mRNA expression in ERK inhibitor group did not change; StAR, P450scc, 3ß-HSD, and P450c17 mRNA expressions were significantly decreased (P < 0.05) in JNK inhibitor group. Additionally, the increased steroidogenic factor 1 (SF-1) gene expression levels induced by ALA were reversed when the cells were pre-incubated with JNK and ERK inhibitors. The levels in the JNK inhibitor group were significantly lower than those in the control group (P < 0.05). CONCLUSION: ALA may promote testosterone biosynthesis by activating the JNK-SF-1 signaling pathway to upregulate StAR, P450scc, 3ß-HSD, and P450c17 expression in primary rooster Leydig cells.


Assuntos
Células Intersticiais do Testículo , Ácido alfa-Linolênico , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/farmacologia , Ácido alfa-Linolênico/farmacologia , Galinhas/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , RNA Mensageiro/metabolismo , Testosterona/metabolismo , Transdução de Sinais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo
11.
Anim Reprod Sci ; 255: 107292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406563

RESUMO

Dihydrotestosterone (DHT) is a potent nonaromatizable 5α-reduced androgen with both positive and negative effect on inflammation process. However, it remains unknown whether DHT can regulate Lipopolysaccharides (LPS)-induced inflammation in bovine endometrial epithelial cells (bEECs). Here, we demonstrated that the DHT biosynthesis ability and androgen receptors (AR) expression is defective in bovine endometrial with endometritis, which aggravates endometrial inflammation. In vitro study, we established a LPS-induced inflammation model in bEECs, and found that DHT inhibited the TLR4 and MyD88 protein as well as TNF-α, IL-1ß, and IL-6 mRNA of bEECs in a dose-dependent manner. Moreover, the anti-inflammation effect of DHT was blocked by AR inhibitor flutamide. Together, we demonstrated that supplementing DHT can alleviate the inflammation response of bEECs caused by LPS, which is associated with AR regulating the inhibition of TLR4/MyD88 signaling pathway.


Assuntos
Doenças dos Bovinos , Endometrite , Feminino , Animais , Bovinos , Lipopolissacarídeos/toxicidade , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Receptores Androgênicos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/veterinária , Transdução de Sinais , Endometrite/induzido quimicamente , Endometrite/veterinária , Endometrite/metabolismo , Células Epiteliais , Doenças dos Bovinos/metabolismo
12.
Mater Today Bio ; 19: 100608, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36969697

RESUMO

Exosomes are a subtype of extracellular vesicles (EVs) with a size range between 30 and 150 â€‹nm, which can be released by the majority of cell types and circulate in body fluid. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has indicated exosomes' central role in regulating various complex reproductive processes. However, to our knowledge, a review that focally and vividly describes the role of exosomes in reproductive development is still lacking. This review highlights our knowledge about the contribution of exosomes to early mammalian reproduction, such as gametogenesis, fertilization, early embryonic development, implantation, placentation and pregnancy. The discussion is primarily drawn from literature pertaining to the mammalian lineage with emphasis on the roles of exosomes in human reproduction and laboratory and livestock models.

13.
Foods ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900542

RESUMO

The flavor of chicken meat is influenced by muscle metabolites and regulatory genes and varies with age. In this study, the metabolomic and transcriptomic data of breast muscle at four developmental stages (days 1, 56, 98, and 120) of Beijing-You chickens (BJYs) were integrated and 310 significantly changed metabolites (SCMs) and 7,225 differentially expressed genes (DEGs) were identified. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SCMs and DEGs were enriched in amino acid, lipid, and inosine monophosphate (IMP) metabolism pathways. Furthermore, genes highly associated with flavor amino acids, lipids, and IMP were identified by a weighted gene co-expression network analysis (WGCNA), including cystathionine ß-synthase (CBS), glycine amidinotransferase (GATM), glutamate decarboxylase 2 (GAD2), patatin-like phospholipasedomain containing 6 (PNPLA6), low-specificity L-threonine aldolase (ItaE), and adenylate monophosphate deaminase 1 (AMPD1) genes. A regulatory network related to the accumulation of key flavor components was constructed. In conclusion, this study provides new perspectives regarding the regulatory mechanisms of flavor metabolites in chicken meat during development.

14.
Food Chem X ; 17: 100550, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845483

RESUMO

Chicken meat quality and flavor are determined by abundant metabolites. In this study, HPLC-QTRAP-MS-based metabolomic analysis was used to evaluate the characteristic metabolites in the breast muscle of Beijing You chickens aged 56, 98, and 120 days. A total of 544 metabolites in 32 categories were identified, among which amino acids and organic acids were the most abundant. 60 and 55 differential metabolites were identified between 56 and 98 days of age, 98 and 120 days of age, respectively. The content of l-carnitine, l-methionine and 3-hydroxybutyrate increased significantly at 98 or 120 days of age. Arginine biosynthesis, purine metabolism, alanine, aspartic acid, and glutamic acid metabolism were important metabolic pathways that affect chicken meat flavor. This study can help to elucidate the metabolic mechanism of breast muscle during Beijing You chicken development and provide a theoretical reference for the improvement of chicken meat quality and flavor.

15.
Front Physiol ; 14: 1110301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744028

RESUMO

Aims: The study aimed to evaluate the effects of pretreated Chinese herbal medicine (PCHM) on egg quality, production performance, histopathological changes in the uterus, antiox idant capacity, and antioxidant gene expression in late-phase layers. Methods: Jinghong No.1 layers (n = 360, 68 weeks old) were assigned randomly to one of f our dietary interventions. Each treatment was replicated six times. Repeat 15 chickens per g roup. All birds were fed a diet composed of a corn-soybean meal-based diet supplemented with 0, 0.2, 0.4, or 0.8% PCHM for 6 weeks. Results: Dietary PCHM supplementation had no significant effects on laying rate, feed con sumption, yolk color, and shape index. With increasing PCHM level the Haugh unit linearly increased (P < 0.05). Supplementation of 0.8% PCHM increased egg weight, compared with the control (P < 0.05). PCHM can effectively alleviated the pathological changes caused by aging in the uterus including hemorrhage, and many inflammatory cell infiltrations. Supplementation of 0.4% PCHM increased glutathione peroxidase (GSHPx) in liver, magnum, and plasm considerably, compared with the control (P < 0.05). Supplementation of PCHM decr ease in the liver, magnum, and uterus on malondialdehyde (MDA) content, compared with the control (P < 0.05). Compared with the control group, mRNA expressions of glutathione peroxidase 1 (GPX1), peroxidase 4 (GPX4), catalase (CAT), and nuclear factor E2-related factor 2 (Nrf2) in the magnum, liver, and uterus were dramatically rose in the 0.4% PCHM supplementation group (P < 0.05). In summary, dietary supplementation after PCHM increased egg weight and quality in late-phase laying hens. Conclusion: Dietary PCHM increased the antioxidative capacity of late-phase laying hens, which could be associated with increased mRNA expression of antioxidant enzymes and Nrf2. These findings provide potential for using PCHM to increase the production performance in late-phase laying hens.

16.
Oxid Med Cell Longev ; 2023: 1708251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846717

RESUMO

Blood-testis barrier (BTB) made of concomitant junction apparatus between Sertoli cells (SCs) is crucial for spermatogenesis. The tight junction (TJ) function is impaired in SCs with age, exhibiting an intimate relationship to testicular dysfunction induced by age. In this study, compared with those in young boars, TJ proteins (i.e., Occludin, ZO-1, and plus Claudin-11) were discovered to have reduced expressions in testes, and spermatogenesis ability declined in old boars. An in vitro age model for D-gal-treated porcine SCs was established, the performance of Curcumin as a natural antioxidant and anti-inflammatory compound in affecting the TJ function of SCs was appraised, and related molecular mechanisms were exploited. The results manifested that 40 g/L D-gal downregulated ZO-1, Claudin-11, and Occludin in terms of the expression in SCs, whereas Curcumin restored such expressions in D-gal-treated SCs. Using the AMPK and SIRT3 inhibiters demonstrated that activation of the AMPK/SIRT3 pathway was associated with Curcumin, which not only rescued the expression of ZO-1, Occludin, Claudin-11, and SOD2 but also inhibited the production of mtROS and ROS and the activation of NLRP3 inflammasome and release of IL-1ß in D-gal-treated SCs. Furthermore, with mtROS scavenger (mito-TEMPO), NLRP3 inhibitor (MCC950) plus IL-1Ra treatment ameliorated D-gal-caused TJ protein decline in SCs. In vivo data also showed that Curcumin alleviated TJ impairment in murine testes, improved D-gal-triggered spermatogenesis ability, and inactivated the NLRP3 inflammasome by virtue of the AMPK/SIRT3/mtROS/SOD2 signal transduction pathway. Given the above findings, a novel mechanism where Curcumin modulates BTB function to improve spermatogenesis ability in age-related male reproductive disorder is characterized.


Assuntos
Curcumina , Sirtuína 3 , Animais , Masculino , Suínos , Camundongos , Células de Sertoli/metabolismo , Inflamassomos/metabolismo , Junções Íntimas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ocludina/metabolismo , Sirtuína 3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transdução de Sinais , Claudinas/metabolismo
17.
Light Sci Appl ; 12(1): 28, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693852

RESUMO

SiC semiconductor is the focus of recent international research. It is also an important raw material for China to achieve carbon emission peak and carbon neutrality. After nearly 20 years of research and development, we focus on the three types SiC crystals, n-type, p-type and semi-insulating, indicating the development of Shandong University for crystal growth. And defects control, electrical property, atomic polishing, and corresponding device authentication all obtain great progress. Total dislocation density of 6-inch n-type substrates decreases to 2307 cm-2, where BPD (Basal Plane Dislocation) lowers to 333 cm-2 and TSD (Threading Screw Dislocation) 19 cm-2. The full width at half maximum (FWHM) (0004) rocking curves is only 14.4 arcsec. The resistivity reaches more than 1E + 12 Ω·cm for semi-insulating SiC and lower than 20 mΩ·cm for n-type SiC. The impurity concentrations in 6-inch high-purity semi-insulating (HPSI) SiC crystals reach extreme low levels. The devices made of various substrate materials have good performance.

18.
Cell Stress Chaperones ; 28(1): 49-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441379

RESUMO

Bovine viral diarrhea (BVD) is a worldwide infectious disease caused by bovine viral diarrhea virus (BVDV) infection, which invades the placenta, causes abortion, produces immune tolerance and continuously infects calves, and causes huge economic losses to the cattle industry. The endoplasmic reticulum (ER) is an important organelle in cells, which is prone to ER stress after being stimulated by pathogens, thus activating the ER stress-related apoptosis. Studies have confirmed that BVDV can utilize the ER of its host to complete its own proliferation and stimulate ER stress to a certain extent. However, the role of ER stress in BVDV infecting bovine placental trophoblast cells (BTCs) and inducing apoptosis is still unclear. We are using the cytopathic strain of BVDV (OregonC24Va), which can cause apoptosis of BTCs, as a model system to determine how ER stress induced by BVDV affects placental toxicity. We show that OregonC24Va can infect BTCs and proliferate in it. With the proliferation of BVDV in BTCs, ER stress-related apoptosis is triggered. The ER stress inhibitor 4-PBA was used to inhibit the ER stress of BTCs, which not only inhibited the proliferation of BVDV, but also reduced the apoptosis of BTCs. The ER stress activator Tg can activate ER stress-related apoptosis, but the proliferation of BVDV does not change in BTCs. Therefore, BVDV utilizes the UPR of activated ER stress to promote the proliferation of BVDV in the early stage of infection, and activates the ER stress-related apoptosis of BTCs in the later stage with the virus proliferation to promote the cell apoptosis and further spread of the virus. Our research provides a new theoretical basis for exploring the placental infection and vertical transmission of BVDV.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Animais , Feminino , Bovinos , Gravidez , Trofoblastos , Placenta , Apoptose/fisiologia , Vírus da Diarreia Viral Bovina/fisiologia , Estresse do Retículo Endoplasmático , Diarreia
19.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139758

RESUMO

Spermatogenesis, sperm motility, and apoptosis are dependent on the regulation of glandular hormones and mitochondria. Natural astaxanthin (ASTA) has antioxidant, anti-inflammatory, and anti-apoptotic properties. The present study evaluates the effects of ASTA on testosterone synthesis and mitochondrial function in aging roosters. Jinghong No. 1 layer breeder roosters (n = 96, 53-week old) were fed a corn−soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. The levels of plasma reproductive hormones and the mRNA and protein levels of molecules related to testosterone synthesis were significantly improved (p < 0.05) in the testes of the ASTA group roosters. In addition, antioxidant activities and free radical scavenging abilities in roosters of the ASTA groups were higher than those of the control group (p < 0.05). Mitochondrial electron transport chain complexes activities and mitochondrial membrane potential in sperm increased linearly with dietary ASTA supplementation (p < 0.05). The levels of reactive oxygen species and apoptosis factors decreased in roosters of the ASTA groups (p < 0.05). Collectively, these results suggest that dietary ASTA may improve testosterone levels and reduce sperm apoptosis, which may be related to the upregulation of the testosterone synthesis pathway and the enhancement of mitochondrial function in aging roosters.

20.
Sci Rep ; 12(1): 15508, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109579

RESUMO

Light initiated multi-gate semiconductor switch (LIMS) is a kind of power electronic device which has many differences from traditional thyristor triggered by electric pulse. LIMS is triggered by laser, the turn-on time is smaller, and the anti-electromagnetic interferences is strong. The opening mode of LIMS is obviously different to traditional thyristor. After the laser into the gate area, a large number of electrons and holes will appear in P-base region, holes gather in the area of P-base in PN junction J2, and electrons gather in N-drift region around the PN junction J2. PN junction J2 will open first, then PN junction J3 opens. The delay time of the NPN and PNP thyristors is close to zero when the laser pulse is narrow and the peak power is high, so the turn-on velocity is fast. To optimize the characteristics of the LIMS at high temperatures, we propose a new structure of the LIMS with the optimization of the n+ layer, circular light gate, and the new-style edge termination. The diameter of the LIMS is 23 mm. The experiment results show that the leakage current of the proposed LIMS has been decreased from more than 1 mA to 500 µA at 125 °C, the output current of the LIMS is 10.2 kA with a voltage of 4 kV at 85 °C, and the output current of the LIMS is 12.1 kA with a voltage of 4 kV at - 55 °C. Additionally, di/dt is larger than 30 kA/µs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...