Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133540, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241834

RESUMO

The effect of microplastics (MPs) on the allocation of rice photosynthetic carbon (C) in paddy systems and its utilization by soil microorganisms remain unclear. In this study, 13C-CO2 pulse labeling was used to quantify the input and allocation of photosynthetic C in a rice-soil system under MPs amendment. Rice was pulse-labeled at tillering growth stage under 0.01% and 1% w/w polyethylene (PE) and polyvinyl chloride (PVC) MP amendments. Plants and soils were sampled 24 h after pulse labeling. Photosynthesized C in roots in MP treatments was 30-54% lower than that in no-MP treatments. The 13C in soil organic C (SOC) in PVC-MP-amended bulk soil was 4.3-4.7 times higher than that in no-MP treatments. PVC and high-dose PE increased the photosynthetic C in microbial biomass C in the rhizosphere soil. MPs altered the allocation of photosynthetic C to microbial phospholipid fatty acid (PLFA) groups. High-dose PVC increased the 13C gram-positive PLFAs. Low-dose PE and high-dose PVC enhanced 13C in fungal PLFAs in bulk soil (including arbuscular mycorrhizal fungi (AMF) and Zygomycota) by 175% and 197%, respectively. The results highlight that MPs alter plant C input and microbial utilization of rhizodeposits, thereby affecting the C cycle in paddy ecosystems.


Assuntos
Oryza , Solo , Microplásticos , Plásticos , Ecossistema , Microbiologia do Solo , Carbono , Polietilenos
2.
Sci Total Environ ; 889: 164245, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211099

RESUMO

Amino acids and peptides are important regulators of ecosystem functioning due to their potential role as direct nutrient sources for plants and soil microbes. However, the turnover and driving factors of these compounds in agricultural soils remain poorly understood. This study aimed to reveal the short-term fate of 14C-labeled alanine and tri-alanine derived C under flooding conditions of the top (0-20 cm) and sub-horizons (20-40 cm) of subtropical paddy soils taken from four long-term (31 years since treatment) nitrogen (N) fertilization regimes (i.e., without fertilization, NPK, NPK with straw return (NPKS) or with manure (NPKM)). Amino acid mineralization was strongly affected by the N fertilization regime and soil depth, while peptide mineralization was only distinct between soil layers. The average half-life of amino acid and peptide in the topsoil was 8 h across all treatments, which was higher than previously reported in uplands. The microbial turnover of amino acid and peptide was 7-10 times slower in the subsoil than in the topsoil, with a half-life of about 2-3 days. The half-life of amino acid and peptide for the respired pool was strongly associated with soil physicochemical characteristics, the total biomass, and the structure of soil microbial communities. The N fertilization regime and soil depth affected the substrate uptake rate by microorganisms, with greater uptake observed in the NPKS and NPKM treatments and the topsoil. Microbial amino acid uptake was correlated with the biomass of total and individual microbial groups, whereas microbial peptide uptake was associated with the soil microbial community structure and physicochemical characteristics. This suggests that there are various pathways of amino acid and peptide use by microorganisms under flooding conditions. We conclude that microbial mineralization of amino acid and its peptide in paddy soils under flooding conditions is slower than in upland soils, and that microbial uptake of these substrates is related to soil abiotic factors and the biomass and structure of soil microbial community. These findings have important implications for understanding nutrient cycling and ecosystem functioning in agricultural soils.


Assuntos
Oryza , Solo , Solo/química , Ecossistema , Aminoácidos , Fertilizantes/análise , Microbiologia do Solo , Oryza/química , Agricultura , Alanina , Nitrogênio/análise , Fertilização
3.
J Environ Manage ; 336: 117722, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924706

RESUMO

Microbial volatile organic compounds (VOCs) can suppress plant pathogens. Although fertilization strongly affects soil microbial communities, the influence of fertilization on microbial VOC-mediated suppression of pathogens has not been elucidated. Soil was sampled from a paddy field that had been subjected to the following treatments for 30 years: a no-fertilizer control, mineral fertilization (NPK), NPK combined with rice straw (NPK + S), NPK combined with chicken manure (70% NPK + 30% M). Then, within a laboratory experiment, pathogens were exposed to VOCs without physical contact to assess the impact of VOCs emitted from paddy soils on in vitro growth of the fungal rice pathogens: Pyricularia oryzae and Rhizoctonia solani. The VOCs emitted from soil reduced the mycelial biomass of P. oryzae and R. solani by 36-51% and 10-30%, respectively, compared to that of the control (no soil; no VOCs emission). Overall, the highest suppression of P. oryzae and R. solani was in the NPK and NPK + S soils, which emitted more quinones, phenols, and low alcohols than NPK + M soils. The abundances of quinones and phenols in the soil air were maximal in the NPK-fertilized soil because the low ratio of dissolved organic carbon and Olsen-P increased the population of key species such as Acidobacteriae, Anaerolineae, and Entorrhizomycetes. The abundance of alcohols was minimum in the NPK + S fertilized soil because the high SOC content decreased the population of Sordariomycetes. In conclusion, mineral fertilization affects bacterial and fungal VOC emissions, thereby suppressing the growth of R. solani and P. oryzae.


Assuntos
Oryza , Microbiologia do Solo , Solo , Bactérias , Biomassa , Fertilizantes/análise , Esterco , Agricultura
4.
Huan Jing Ke Xue ; 43(10): 4745-4754, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224160

RESUMO

Film mulching is an important practice to increase the yield and income in agricultural production. Soil samples were collected from four farmland sites with different mulching years to reveal the effect of long-term plastic mulching on characteristics of soil microbial community structure. In order to explore the long-term effect of soil microbial community change and its effect on the microbial ecological environment, high-throughput sequencing technology was used to analyze the changes in soil bacterial and fungal community structure. The results showed that long-term film mulching had no significant effect on soil bacterial diversity but decreased fungal diversity. Long-term film mulching decreased the abundance of Acidobacteriota and Mortierellomycetes and increased the abundance of Actinobacteriota. Long-term film mulching enriched the beneficial microbial communities such as Bacillus, Nocardioidaceae, Aspergillus, and Hypocreales in soil. However, long-term film mulching indued a simple and fragile soil fungal co-occurrence network pattern. The unidentified Sordariales under Ascomycota was the only key species in the fungal co-occurrence network, which resulted in potential risks to the ecological environment of the farmland soil. This study provided a theoretical basis for further understanding the effects of long-term film mulching on the ecological and environmental effects of microorganisms in farmland.


Assuntos
Microbiota , Solo , Agricultura/métodos , Bactérias , China , Plásticos , Solo/química , Microbiologia do Solo
5.
J Hazard Mater ; 438: 129547, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999743

RESUMO

Microplastics can perturb microbial nutrient-mining strategies. However, the mechanism by which microplastics affect the resource-acquisition strategies of crops in agricultural systems remains unknown. The nutrient-acquisition potential of crops and microbes was investigated under treatments with two common microplastics (polyethylene [PE] and polyvinyl chloride [PVC]) at 0%, 1%, and 5% (w/w). Different root resource-acquisition strategies disturbed microbial nutrient turnover in the rhizosphere in response to microplastic addition. Specifically, the ß-1,4-glucosidase (BG) hotspot expanded, whereas the rhizosphere expansion of BG activity decreased. A decrease of less than PE1% (w/w) and an expansion of less than PE5% (w/w) in the 1,4-N-acetyl-glucosaminidase (NAG) hotspot with wider rhizosphere expansion of NAG activity indicated that higher doses of PE allow roots to uptake additional N. The phosphomonoesterase (PHOS) hotspot decreased in PE1% (w/w) and expanded in PE5% (w/w), but rhizosphere expansion did not change under PE treatments. However, both NAG and PHOS hotspots expanded with decreasing rhizosphere expansion under PVC treatments, indicating that PVC limits the utilization of available N and P, forcing the crop to obtain nutrients from the narrow root zone. These results indicate that adding PE microplastics increases the demand for and consumption of NH4+-N and NO3--N by wheat.


Assuntos
Microplásticos , Solo , Produtos Agrícolas , Nutrientes , Plásticos , Cloreto de Polivinila , Rizosfera , Microbiologia do Solo , Triticum
6.
Glob Chang Biol ; 28(22): 6711-6727, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986445

RESUMO

Paddies contain 78% higher organic carbon (C) stocks than adjacent upland soils, and iron (Fe) plaque formation on rice roots is one of the mechanisms that traps C. The process sequence, extent and global relevance of this C stabilization mechanism under oxic/anoxic conditions remains unclear. We quantified and localized the contribution of Fe plaque to organic matter stabilization in a microoxic area (rice rhizosphere) and evaluated roles of this C trap for global C sequestration in paddy soils. Visualization and localization of pH by imaging with planar optodes, enzyme activities by zymography, and root exudation by 14 C imaging, as well as upscale modeling enabled linkage of three groups of rhizosphere processes that are responsible for C stabilization from the micro- (root) to the macro- (ecosystem) levels. The 14 C activity in soil (reflecting stabilization of rhizodeposits) with Fe2+ addition was 1.4-1.5 times higher than that in the control and phosphate addition soils. Perfect co-localization of the hotspots of ß-glucosidase activity (by zymography) with root exudation (14 C) showed that labile C and high enzyme activities were localized within Fe plaques. Fe2+ addition to soil and its microbial oxidation to Fe3+ by radial oxygen release from rice roots increased Fe plaque (Fe3+ ) formation by 1.7-2.5 times. The C amounts trapped by Fe plaque increased by 1.1 times after Fe2+ addition. Therefore, Fe plaque formed from amorphous and complex Fe (oxyhydr)oxides on the root surface act as a "rusty sink" for organic matter. Considering the area of coverage of paddy soils globally, upscaling by model revealed the radial oxygen loss from roots and bacterial Fe oxidation may trap up to 130 Mg C in Fe plaques per rice season. This represents an important annual surplus of new and stable C to the existing C pool under long-term rice cropping.


Assuntos
Celulases , Oryza , Poluentes do Solo , Carbono , Ecossistema , Ferro/análise , Óxidos , Oxigênio , Fosfatos , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
7.
World J Microbiol Biotechnol ; 38(9): 155, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796795

RESUMO

Characterizing the microbial communities associated with soil-borne disease incidence is a key approach in understanding the potential role of microbes in protecting crops from pathogens. In this study, we compared the soil properties and microbial composition of the rhizosphere soil and roots of healthy and bacterial wilt-infected tobacco plants to assess their potential influence on plant health. Our results revealed that the relative abundance of pathogens was higher in diseased plants than in healthy plants. Moreover, compared with healthy plants, there was a significantly higher microbial alpha diversity in the roots and rhizosphere soil of diseased plants. In addition, we detected a lower abundance of certain plant microbiota, including species in the genera Penicillium, Trichoderma, and Burkholderia in the rhizosphere of diseased plants, which were found to be significantly negatively associated with the relative abundance of Ralstonia. Indeed, compared with healthy plants, the co-occurrence networks of diseased plants included a larger number of associations linked to plant health. Furthermore, structural equation modeling revealed that these specific microbes were correlated with disease suppression, thereby implying that they may play important roles in maintaining plant health. In conclusion, our findings provide important insights into the relationships between soil-borne disease incidence and changes in the belowground microbial community. These findings will serve as a basis for further research investigating the use of specific plant-associated genera to inhibit soil-borne diseases.


Assuntos
Microbiota , Nicotiana , Bactérias/genética , Fungos , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo
8.
J Hazard Mater ; 432: 128721, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334262

RESUMO

The accumulation of microplastics (MPs) in terrestrial ecosystems can affect greenhouse gases (GHGs) production by changing soil structure and microbial functions. In this study, microcosm experiments were conducted to investigate the impact of polyethylene (PE) MP addition on soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions from paddy soils and their associated microbial functional genes. Methane was not considered due to the negligible emissions throughout the incubation. The amendment of both virgin and aged PE MPs did not significantly (p > 0.05) affect soil CO2 emissions, but significantly (p < 0.05) increased the abundances of microbial functional genes encoding enzymes involved in hemicellulose (abfA) and lignin (mnp) decomposition, indicating plastic particle has potential to stimulate soil organic carbon decomposition. The presence of PE MP significantly increased N2O emissions by 3.7-fold, which was probably due to PE MP increased the abundances of nirS gene involved in nitrite reductase. In addition, compared with virgin PE MP treatment, artificially aged PE MP did not significantly (p > 0.05) influence soil CO2 and N2O emissions. Our results provide evidence that PE MP likely cause a high risk of N2O emission from paddy soils, this factor should be considered in future estimates of GHGs emissions from rice fields.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Carbono , Dióxido de Carbono/análise , Ecossistema , Metano/análise , Microplásticos , Óxido Nitroso , Plásticos , Polietileno , Solo/química
9.
J Hazard Mater ; 431: 128589, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247738

RESUMO

Microplastics (MPs) can alter microbial communities and carbon (C) cycling in agricultural soils. However, the mechanism by which MPs affect the decomposition of microbe-driven soil organic matter remains unknown. We investigated the bacterial community succession and temporal turnover during soil organic matter decomposition in MP-amended paddy soils (none, low [0.01% w/w], or high [1% w/w]). We observed that MPs reduced the CO2 efflux rate on day 3 and subsequently promoted it on day 15 of incubation. This increased CO2 emission in MP-amended soil may be related to (i) enhanced hydrolase enzyme activities or; (ii) shifts in the Shannon diversity, positive group interactions, and temporal turnover rates (from 0.018 to 0.040). CO2 efflux was positively correlated (r > 0.8, p < 0.01) with Ruminiclostridium_1, Mobilitalea, Eubacterium xylanophilum, Sporomusa, Anaerobacteriu, Papillibacter, Syntrophomonadaceae, and Ruminococcaceae_UCG_013 abundance in soil with high MPs, indicating that these genera play important roles in soil organic C mineralization. These results demonstrate how microorganisms adapt to MPs and thus influence the C cycle in MP-polluted paddy ecosystems.


Assuntos
Microbiota , Solo , Dióxido de Carbono , Microplásticos , Plásticos , Microbiologia do Solo
10.
Huan Jing Ke Xue ; 43(3): 1649-1656, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258229

RESUMO

Ecological enzyme stoichiometry can be used to evaluate the limit of soil microbial energy and nutrient resources. To illustrate the effects of plastic mulch film on soil ecological enzyme stoichiometry in farmland, this study collected soil with different amounts of mulching film residual and used the fluorescence analysis to determine the activities of key enzymes for the carbon, nitrogen, and phosphorus cycle processes including ß-1,4-glycosidase (BG), ß-1,4-N-acetyl amino glycosidase (NAG), and phosphatase (ACP) activity. This study investigated the effects of plastic mulch film on soil nutrient cycling and supply in farmland. The results showed that in the soil with chemical fertilizer, plastic film mulching decreased soil Olsen-P and NO3--N contents to 48%-62% and 16%-24% of those in the soil without plastic film mulching, respectively. In the soil with the combined application of organic-chemical fertilizers, plastic film mulching increased Olsen-P and NO3--N contents by 144%-203% and 1.9-5.1 times, respectively. In the organic-chemical fertilization soils, plastic film mulching decreased SOC:TN in soils by 6.6%-25.8%, whereas it increased SOC:TP and TN:TP significantly. MBC, MBN, and MBP contents in the soil with plastic film mulching were significantly lower than that in non-plastic film mulching farmland, and there were no significant differences in MBC:MBN and MBC:MBP between soil with and without plastic film mulching. The MBN:MBP was reduced by 36.6% and 23.8% in S1 and S2, and 5.4 and 1.3 times in S3 and S4 by plastic film mulching, respectively. The change pattern of NAG:ACP in soil was similar to that of the corresponding elements ratio in microbial biomass. In the soil from plastic film mulching, the ratio of BG:NAG was 1.3-15 times higher in organic-chemical fertilization soils than that with only chemical fertilizer. In conclusion, plastic film mulching reduced the availability of soil nutrients, and organic-chemical fertilization alleviated the limitation of soil nutrients to a certain extent. This study deepened the understanding of the response of soil microorganisms to nutrient cycling after plastic film mulching. It provides a theoretical basis for optimizing the farmland management in the use of plastic film.


Assuntos
Plásticos , Solo , Agricultura/métodos , Carbono/análise , China , Fazendas , Fertilizantes/análise , Nitrogênio/análise , Nutrientes/análise , Solo/química , Microbiologia do Solo
11.
J Hazard Mater ; 416: 126221, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492976

RESUMO

Microplastics (MPs) are a widespread pollutant in terrestrial ecosystems. However, knowledge on how MPs impact soil organic matter (SOM) decomposition and the priming effect (PE) in rice paddy soil remains limited. By employing a three-source-partitioning approach, we investigated the interactive impact of MP dosage (none, low [0.01% w/w] or high [1% w/w]), labile C (14C-labeled glucose), and 13C-labeled rice straw addition on SOM decomposition and PE. Compared to soil without C addition (i.e., control), total SOM-derived CO2 in low-MP soil declined by 13.2% and 7.1% after straw and glucose addition, respectively. Under combined glucose and rice straw addition, glucose-induced PE was up to 10 times stronger in the presence of low-MPs compared to that in high-MPs. However, glucose induced negative PE on rice straw decomposition in the presence of MPs. SOM decomposition was much higher under low MP dosage than under high MP dosage. However, MPs had a negligible effect on the mineralization of exogenous C substrate (glucose or straw). This study provides a novel and valuable insight on how MPs affect SOM turnover and C sequestration in paddy soil, highlighting the significance of interactions between environmental pollutants and biogeochemical processes that affect CO2 fluxes.


Assuntos
Oryza , Solo , Carbono , Ecossistema , Microplásticos , Plásticos , Microbiologia do Solo
12.
Huan Jing Ke Xue ; 42(2): 988-995, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742895

RESUMO

The rhizosphere priming effect (RPE) caused by carbon inputs from crop rhizodeposits plays a key role in regulating the carbon emission flux and carbon balance of farmland soils. Due to frequent alternations between dry and wet conditions, CO2 and CH4 emissions and the RPE in paddy field ecosystems are significantly different to those of other ecosystems. Therefore, it is of great significance to determine the direction and intensity of the rice RPE under alternations of dry and wet to limit greenhouse gas emissions. In this study, using a 13C-CO2 continuous labeling method combined with a pot-based experiment, the response of rice growth and the RPE under alternating dry and wet and continuous flooding conditions was examined. The results showed that, compared with the continuous flooding treatment, the alternating dry and wet treatments significantly increased aboveground and root biomass and the root-to-root ratio, and also increased soil microbial biomass. Under continuous flooding conditions, fluxes of 13CO2 and 13CH4 increased with rice growth from 10.2 µg·(kg·h)-1 and 2.8 µg·(kg·h)-1 (63 d) to 16.0 µg·(kg·h)-1 and 3.2 µg·(kg·h)-1 (75 d), respectively. During the 12-day drying process, the emissions of 13CO2 and 13CH4 derived from rhizosphere deposited C decreased by 57.5% and 88.1%. Under continuous flooding conditions, the RPE for CO2 and CH4 were positive and increased with the growth of rice. Under the alternating dry and wet treatment, after 12 days of drying, the RPE for CO2 and CH4 was reduced from 0.29 mg·(kg·h)-1 and 12.3 µg·(kg·h)-1 (63 d) to -0.39 mg·(kg·h)-1 and 0.07 µg·(kg·h)-1 (75 d). Thus, alternating wet and dry treatment can effectively promote rice growth and reduce the cumulative emissions of CH4. Therefore, adopting appropriate field water management is of great significance for increasing rice yields and mitigating greenhouse gas emissions.


Assuntos
Oryza , Solo , Agricultura , Dióxido de Carbono/análise , Ecossistema , Metano , Óxido Nitroso/análise , Rizosfera , Água , Abastecimento de Água
13.
Huan Jing Ke Xue ; 40(4): 1957-1964, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087942

RESUMO

This research studied the response of the input and allocation of photosynthetic carbon (C) to phosphorus (P) in paddy soils. Two treatments were conducted in this experiment:no P application (P0) and the application of 80 mg·kg-1 of P (P80). The rice cultivar was the indica Zhongzao 39. The 13C-CO2 continuous labeling technique was used to identify the photosynthetic C distribution of the rice. The results showed that the application of P80 significantly increased the photosynthates allocation in the rice aboveground, but reduced their allocation in the rhizosphere soil (P<0.05). At the jointing stage, P80 application increased the photosynthetic C content of the rice by 70%, but the root dry weight decreased 31%. Compared with P0, the total C content of the aboveground rice was increased 0.31 g·pot-1 by P80. The ratio of rice roots to shoots decreased with the P80 treatment. Moreover, P80 application led to an increase in the photosynthetic microbial biomass in the non-rhizosphere soil C (13C-MBC) of 0.03 mg·kg-1, but still decreased its allocation in the rhizosphere soil. The allocation of photosynthetic C to the particulate organic matter fraction (POC) and mineral fraction (MOC) in the non-rhizosphere soil showed no significant differences between P0 and P80. Additionally, the P80 fertilization treatment significantly lowered the content of POC in the rhizosphere soil. In summary, P application increased the allocation of photosynthetic C in the soil-rice system, but reduced the accumulation of photosynthetic C in the soil. This research provided a theoretical basis and data supporting the rational application of P fertilizer, and was also of great significance as a study of the transportation and allocation of photosynthetic C and its sequestration potential response to the application of P to the rice soil.


Assuntos
Carbono/química , Fertilizantes , Oryza/fisiologia , Fósforo/química , Solo/química , Fotossíntese
14.
Huan Jing Ke Xue ; 39(12): 5708-5716, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628418

RESUMO

The variation characteristics of ecological stoichiometric ratios can reflect the nature of plant adaptation to environmental changes. The C, N, and P contetns, and their stoichiometric ratios in different organs of rice were studied using a CO2 continuous labeling system, by simulating the increase of atmospheric CO2 concentration (800×10-6). The results showed that CO2 doubling promoted the growth of rice organs and increased the root/shoot ratio. CO2 doubling reduced the shoot TN content in different growth periods, increased the C/N ratio in the rice root, shoot, and grain, decreased the N use efficiency, and improved the P use efficiency. Multiple comparison and Venn diagram analyses showed that CO2 concentration only has a significant impact on the TN content in the rice shoot; it contributed little to the variation in rice nutrient content and their stoichiometric ratios, indicating that CO2 doubling had no effect on these. Under the condition of elevated atmospheric CO2 concentrations, the C, N, and P contents and their stoichiometirc ratios, in rice organs had good homeostasis, and the stoichiometric change during growth periods was consistent with "the Growth Rate Theory". In farmland management, appropriate nitrogen fertilizers can alleviate the nutrient balance pressure caused by the increase in CO2 concentration.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Fósforo/análise , Oryza/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...