Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 80, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206434

RESUMO

Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt-Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm-2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt-Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm-2 with good reusability.

2.
Sci Adv ; 9(42): eadh4626, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862412

RESUMO

Attaining substantial areal capacity (>3 mAh/cm2) and extended cycle longevity in all-solid-state lithium metal batteries necessitates the implementation of solid-state electrolytes (SSEs) capable of withstanding elevated critical current densities and capacities. In this study, we report a high-performing vacancy-rich Li9N2Cl3 SSE demonstrating excellent lithium compatibility and atmospheric stability and enabling high-areal capacity, long-lasting all-solid-state lithium metal batteries. The Li9N2Cl3 facilitates efficient lithium-ion transport due to its disordered lattice structure and presence of vacancies. Notably, it resists dendrite formation at 10 mA/cm2 and 10 mAh/cm2 due to its intrinsic lithium metal stability. Furthermore, it exhibits robust dry-air stability. Incorporating this SSE in Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode-based all-solid-state batteries, we achieve substantial cycling stability (90.35% capacity retention over 1500 cycles at 0.5 C) and high areal capacity (4.8 mAh/cm2 in pouch cells). These findings pave the way for lithium metal batteries to meet electric vehicle performance demands.

3.
Nature ; 617(7962): 724-729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138081

RESUMO

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

4.
Nat Commun ; 14(1): 1719, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977716

RESUMO

Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H2 yields of 4.7 mol g(Co)-1 and 4.4 mol g(Co)-1, respectively. Moreover, the H2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 × 104 for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.

5.
Small Methods ; 5(9): e2100176, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34928060

RESUMO

Numerous efforts are made to improve the reversible capacity and long-term cycling stability of Li-S cathodes. However, they are susceptible to irreversible capacity loss during cycling owing to shuttling effects and poor Li+ transport under high sulfur loading. Herein, a physically and chemically enhanced lithium sulfur cathode is proposed to address these challenges. Additive manufacturing is used to construct numerous microchannels within high sulfur loading cathodes, which enables desirable deposition mechanisms of lithium polysulfides and improves Li+ and e- transport. Concurrently, cobalt sulfide is incorporated into the cathode composition and demonstrates strong adsorption behavior toward lithium polysulfides during cycling. As a result, excellent electrochemical performance is obtained by the design of a physically and chemically enhanced lithium sulfur cathode. The reported electrode, with a sulfur loading of 8 mg cm-2 , delivers an initial capacity of 1118.8 mA h g-1 and a reversible capacity of 771.7 mA h g-1 after 150 cycles at a current density of 3 mA cm-2 . This work demonstrates that a chemically enhanced sulfur cathode, manufactured through additive manufacturing, is a viable pathway to achieve high-performance Li-S batteries.

6.
Nano Lett ; 21(20): 8924-8932, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34410722

RESUMO

CO2 electroreduction powered by renewable electricity represents a promising method to enclose anthropogenic carbon cycle. Current catalysts display high selectivity toward the desired product only over a narrow potential window due primarily to unoptimized intermediate binding. Here, we report a functional ligand modification strategy in which palladium nanoparticles are encapsulated inside metal-organic frameworks with 2,2'-bipyridine organic linkers to tune intermediate binding and thus to sustain a highly selective CO2-to-CO conversion over widened potential window. The catalyst exhibits CO faradaic efficiency in excess of 80% over a potential window from -0.3 to -1.2 V and reaches the maxima of 98.2% at -0.8 V. Mechanistic studies show that the 2,2'-bipyridine on Pd surface reduces the binding strength of both *H and *CO, a too strong binding of which leads to competing formate production and CO poison, respectively, and thus enhances the selectivity and stability of CO product.


Assuntos
Dióxido de Carbono , Nanopartículas Metálicas , Catálise , Eletricidade , Paládio
7.
Adv Mater ; 33(35): e2101259, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34292627

RESUMO

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes. Here, a high-performance nanostructured BP-graphite-carbon nanotubes composite (BP/G/CNTs) synthesized using ball-milling method is reported. The BP/G/CNTs anode delivers a high initial capacity of 1375 mA h g-1 at 0.15 A g-1 and maintains 1031.7 mA h g-1 after 450 cycles. Excellent high-rate performance is demonstrated with a capacity of 508.1 mA h g-1 after 3000 cycles at 2 A g-1 . Moreover, for the first time, direct evidence is provided experimentally to present the electrochemical mechanism of BP anodes with three-step lithiation and delithiation using ex situ X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), ex situ X-ray emission spectroscopy, operando XRD, and operando XAS, which reveal the formation of Li3 P7 , LiP, and Li3 P. Furthermore, the study indicates an open-circuit relaxation effect of the electrode with ex situ and operando XAS analyses.

8.
Nat Commun ; 12(1): 2870, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001869

RESUMO

Electrochemically converting nitrate, a widespread water pollutant, back to valuable ammonia is a green and delocalized route for ammonia synthesis, and can be an appealing and supplementary alternative to the Haber-Bosch process. However, as there are other nitrate reduction pathways present, selectively guiding the reaction pathway towards ammonia is currently challenged by the lack of efficient catalysts. Here we report a selective and active nitrate reduction to ammonia on Fe single atom catalyst, with a maximal ammonia Faradaic efficiency of ~ 75% and a yield rate of up to ~ 20,000 µg h-1 mgcat.-1 (0.46 mmol h-1 cm-2). Our Fe single atom catalyst can effectively prevent the N-N coupling step required for N2 due to the lack of neighboring metal sites, promoting ammonia product selectivity. Density functional theory calculations reveal the reaction mechanisms and the potential limiting steps for nitrate reduction on atomically dispersed Fe sites.

9.
PLoS One ; 15(12): e0244621, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378374

RESUMO

Alkali-activated materials (AAMs), sometimes called geopolymers, are eco-friendly cementitious materials with reduced carbon emissions when compared to ordinary Portland cement. However, the availability of most precursors used for AAM production may decline in the future because of changes in industrial sectors. Thus, new precursors must be developed. Recently there has been increased interest in synthetic glass precursors. One major concern with using synthetic glasses is ensuring that they react sufficiently under alkaline conditions. Reactivity is a necessary, although not sufficient, requirement for a suitable precursor for AAMs. This work involves the synthesis, characterization, and estimation of alkaline reactivity of Na-Mg aluminosilicate glasses. Structural characterization showed that replacing Na with Mg led to more depolymerization. Alkaline reactivity studies indicated that, as Mg replaced Na, reactivity of glasses increased at first, reached an optimal value, and then declined. This trend in reactivity could not be explained by the conventional parameters used for estimating glass reactivity: the non-bridging oxygen fraction (which predicts similar reactivity for all glasses) and optical basicity (which predicts a decrease in reactivity with an increase in Mg replacement). The reactivity of the studied glasses was found to depend on two main factors: depolymerization (as indicated by structural characterization) and optical basicity. Depolymerization dominated initially, which led to an increase in reactivity, while the effect of optical basicity dominated later, leading to a decrease in reactivity. Hence, while designing reactive synthetic glasses for alkali activation, structural study of glasses should be given due consideration in addition to the conventional factors.


Assuntos
Silicatos de Alumínio/química , Vidro/química , Magnésio/química , Sódio/química , Álcalis/química , Materiais Biocompatíveis/química , Modelos Moleculares , Conformação Molecular , Difração de Raios X
10.
ACS Appl Mater Interfaces ; 12(2): 2293-2298, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31859469

RESUMO

All-solid-state batteries are expected to be promising next-generation energy storage systems with increased energy density compared to the state-of-the-art Li-ion batteries. Nonetheless, the electrochemical performances of the all-solid-state batteries are currently limited by the high interfacial resistance between active electrode materials and solid-state electrolytes. In particular, elemental interdiffusion and the formation of interlayers with low ionic conductivity are known to restrict the battery performance. Herein, we apply a nondestructive variable-energy hard X-ray photoemission spectroscopy to detect the elemental chemical states at the interface between the cathode and the solid-state electrolyte, in comparison to the widely used angle-resolved (variable-angle) X-ray photoemission spectroscopy/X-ray absorption spectroscopy methods. The accuracy of variable-energy hard X-ray photoemission spectroscopy is also verified with a focused ion beam and high-resolution transmission electron microscopy. We also show the significant suppression of interdiffusion by building an artificial layer via atomic layer deposition at this interface.

11.
Nat Commun ; 9(1): 3828, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237471

RESUMO

Copper-based materials are promising electrocatalysts for CO2 reduction. Prior studies show that the mixture of copper (I) and copper (0) at the catalyst surface enhances multi-carbon products from CO2 reduction; however, the stable presence of copper (I) remains the subject of debate. Here we report a copper on copper (I) composite that stabilizes copper (I) during CO2 reduction through the use of copper nitride as an underlying copper (I) species. We synthesize a copper-on-nitride catalyst that exhibits a Faradaic efficiency of 64 ± 2% for C2+ products. We achieve a 40-fold enhancement in the ratio of C2+ to the competing CH4 compared to the case of pure copper. We further show that the copper-on-nitride catalyst performs stable CO2 reduction over 30 h. Mechanistic studies suggest that the use of copper nitride contributes to reducing the CO dimerization energy barrier-a rate-limiting step in CO2 reduction to multi-carbon products.

12.
ChemistryOpen ; 6(1): 149-157, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168160

RESUMO

The microenvironment of a tumor changes chemically and morphologically during cancer progression. Cancer-stimulated fibroblasts promote tumor growth, however, the mechanism of the transition to a cancer-stimulated fibroblast remains elusive. Here, the multi-modal spectroscopic methods Fourier transform infrared imaging (FTIRI), X-ray absorption spectroscopy (XAS) and X-ray fluorescence imaging (XFI) are used to characterize molecular and atomic alterations that occur in cancer-stimulated fibroblasts. In addition to chemical changes in lipids (olefinic and acyl chain) and protein aggregation observed with FTIRI, a new infrared biomarker for oxidative stress in stimulated fibroblasts is reported. Oxidative stress is observed to cause lipid peroxidation, which leads to the appearance of a new band at 1721 cm-1, assigned to 4-hydroxynonenal. Complementary to FTIRI, XFI is well suited to determining atom concentrations and XAS can reveal the speciation of individual elements. XFI reveals increased concentrations of P, S, K, Ca within stimulated fibroblasts. Furthermore, XAS studies reveal alterations in the speciation of S and Ca in stimulated fibroblasts, which might provide insight into the mechanisms of cancer progression. Using XFI, not only is the concentration change of individual elements observed, but also the subcellular localization. This study demonstrates the wealth of biochemical information provided by a multi-modal imaging approach and highlights new avenues for future research into the microenvironment of breast tumors.

13.
J Synchrotron Radiat ; 24(Pt 1): 333-337, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009575

RESUMO

Micro-XAFS and chemical imaging techniques have been widely applied for studies of heterogeneously distributed systems, mostly in hard X-ray (>5 keV) or in soft X-ray (<1.5 keV) energies. The microprobe endstation of the SXRMB (soft X-ray microcharacterization beamline) at the Canadian Light Source is optimized at the medium energy (1.7-5 keV), and it has been recently commissioned and is available for general users. The technical design and the performance (energy range, beam size and flux) of the SXRMB microprobe are presented. Examples in chemical imaging and micro-XAFS in the medium energy for important elements such as P, S and Ca for soil and biological samples are highlighted.


Assuntos
Síncrotrons , Raios X , Canadá
14.
Nano Lett ; 16(6): 3545-9, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27175936

RESUMO

Lithium-sulfur (Li-S) battery is a promising high energy storage candidate in electric vehicles. However, the commonly employed ether based electrolyte does not enable to realize safe high-temperature Li-S batteries due to the low boiling and flash temperatures. Traditional carbonate based electrolyte obtains safe physical properties at high temperature but does not complete reversible electrochemical reaction for most Li-S batteries. Here we realize safe high temperature Li-S batteries on universal carbon-sulfur electrodes by molecular layer deposited (MLD) alucone coating. Sulfur cathodes with MLD coating complete the reversible electrochemical process in carbonate electrolyte and exhibit a safe and ultrastable cycle life at high temperature, which promise practicable Li-S batteries for electric vehicles and other large-scale energy storage systems.

15.
Phys Chem Chem Phys ; 16(27): 13858-65, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24626214

RESUMO

A series of Li3V(2-2/3x)Zn(x)(PO4)3/C phases were synthesized by carbon thermal reduction assisted by the ball-mill process. Scanning electron microscopy (SEM) showed that the irregular morphology of the pristine Li3V2(PO4)3/C could be transformed to spherical upon doping with a suitable amount of zinc. The structural stability of the pristine and the Zn doped Li3V2(PO4)3/C were investigated via X-ray absorption near edge structure (XANES) spectroscopy and X-ray diffraction (XRD). The results revealed that Zn doping not only improves the stability of the VO6 octahedral structures before electrochemical cycling, but also reduces the degree of irreversible expansion of the c axis and the crystal volume upon repeated cycles. Among the Li3V(2-2/3x)Zn(x)(PO4)3/C (0 ≤x≤ 0.15) series, the sample doped with 0.05 Zn atoms per formula unit showed the best electrochemical performance. Excess Zn doping (x > 0.05) didn't result in further improvement in the electrochemical performance due to the segregation effect and the inactive nature of Zn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...