Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763516

RESUMO

Due to misbalanced energy surplus and expenditure, obesity has become a common chronic disorder that is highly associated with many metabolic diseases. Pu-erh tea, a traditional Chinese beverage, has been believed to have numerous health benefits, such as anti-obesity. However, the underlying mechanisms of its anti-obesity effect are yet to be understood. Here, we take the advantages of transcriptional profile by RNA sequencing (RNA-Seq) to view the global gene expression of Pu-erh tea. The model organism Caenorhabditis elegans was treated with different concentrations of Pu-erh tea water extract (PTE, 0 g/mL, 0.025 g/mL, and 0.05 g/mL). Compared with the control, PTE indeed decreases lipid droplets size and fat accumulation. The high-throughput RNA-Sequence technique detected 18073 and 18105 genes expressed in 0.025 g/mL and 0.05 g/mL PTE treated groups, respectively. Interestingly, the expression of the vitellogenin family (vit-1, vit-2, vit-3, vit-4 and vit-5) was significantly decreased by PTE, which was validated by qPCR analysis. Furthermore, vit-1(ok2616), vit-3(ok2348) and vit-5(ok3239) mutants are insensitive to PTE triggered fat reduction. In conclusion, our transcriptional profile by RNA-Sequence suggests that Pu-erh tea lowers the fat accumulation primarily through repression of the expression of vit(vitellogenin) family, in addition to our previously reported (sterol regulatory element binding protein) SREBP-SCD (stearoyl-CoA desaturase) axis.


Assuntos
Caenorhabditis elegans/genética , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Vitelogeninas/genética , Tecido Adiposo/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Medicamentos de Ervas Chinesas/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Família Multigênica/efeitos dos fármacos , Mutação , Chás de Ervas/análise
2.
Nanoscale ; 7(5): 2034-41, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25553649

RESUMO

As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ∼300 mg L(-1), GQDs were innoxious to MDCK and did not affect the morphology and integrity of the cell monolayer. The Papp values were determined to be 1-3 × 10(-6) cm s(-1) for the 12 nm GQDs and 0.5-1.5 × 10(-5) cm s(-1) for the 3 nm GQDs, indicating that the 3 nm GQDs are well-transported species while the 12 nm GQDs have a moderate membrane permeability. The transport and uptake of GQDs by MDCK cells were both time and concentration-dependent. Moreover, the incubation of cells with GQDs enhanced the formation of lipid rafts, while inhibition of lipid rafts with methyl-ß-cyclodextrin almost eliminated the membrane transport of GQDs. Overall, the experimental results suggested that GQDs cross the MDCK cell monolayer mainly through a lipid raft-mediated transcytosis. The present work has indicated that GQDs are a novel, low-toxic, highly-efficient general carrier for drugs and/or diagnostic agents in biomedical applications.


Assuntos
Grafite/química , Pontos Quânticos/metabolismo , Animais , Transporte Biológico , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cães , Células Madin Darby de Rim Canino , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Transcitose , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...